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Abstract

In bipartite quantum systems commutation relations between the Hamiltonian of each subsystem and the
interaction impose fundamental constraints on the dynamics of each partition. Here we investigate work,
heat and entropy production in bipartite systems characterized by particular commutators between their
local Hamiltonians and the interaction operator. We consider the formalism of (Weimer et al 2008
Europhys. Lett. 83 30008), in which heat (work) is identified with energy changes that (do not) alter the
local von Neumann entropy, as observed in an effective local measurement basis. We demonstrate the
consequences of the commutation relations on the work and heat fluxes into each partition, and extend
the formalism to open quantum systems where one, or both, partitions are subject to a Markovian thermal
bath. We also discuss the relation between heat and entropy in bipartite quantum systems out of thermal
equilibrium, and reconcile the aforementioned approach with the second law of thermodynamics.

1. Introduction

The emergence of thermodynamic behaviour within quantum mechanical systems has attracted much attention
inrecent years [1, 2]. This interest is motivated by the desire to gain a deeper understanding of thermodynamics,
as well as the need to obtain generalizations of thermodynamic concepts and constraints to quantum settings. A
conceptual understanding of work, heat and the second law in the quantum domain has therefore been central
to research in quantum thermodynamics [3-8]. Owing to advancements in quantum technologies,
experimental tests of these concepts are within tangible reach [9-12]. The developments in this area allow
investigation of the relevance of coherence in the efficiency of quantum engines [13] and can guide the design of
nano-mechanical devices with thermodynamic functionalities [ 14, 15].

The conventional definition of work and heat for a quantum system evolving under a time-dependent
Hamiltonian considers the change in the internal energy U of a system with associated density matrix p as
U = Tr{pH} + Tr{pH}and identifies the first (second) term as the work (heat) flux [16]. This division assumes
thata classical, external, driving gives rise to a time-dependent Hamiltonian. In contrast, we are interested in
autonomous bipartite quantum systems in which the inherent quantum mechanical interaction between the
two partitions results in internal transfer of energy. This internal transfer can subsequently be identified as either
aheat, or awork, flux [ 17-19]. There are plenty of quantum settings where such is the case, but an interesting
example is a prototype biological dimer where the quantum interaction between electronic and intramolecular
vibrational motions results in non-classical behaviour and internal energy transfer [20]. A framework for
defining work and heat fluxes in autonomous quantum systems was presented by Weimer and colleagues in
[17]. This approach, henceforth referred to as the Weimer framework or the energy flux formalism, argues that
time-dependent Hamiltonians arise from tracing out the degrees of freedom of the driver and need not have a
classical, or external, origin. By defining an effective local energy basis, heat (work) flux is identified with energy
changes that (do not) alter the the local von Neumann entropy. This framework is of considerable conceptual
interest as it aims to extend the connection between entropy and heat to finite, out of equilibrium quantum
systems. Despite its conceptual ease and formal structure, this approach has not been widely used in the
investigation of work and heat in quantum systems [21]. This is arguably due to the differences between the
work flux defined in this way and the extractable (measurable) work; the latter being the focus of most prior
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research [5, 11]. As work done on a system is not a quantum observable [5], its quantum statistical properties
and the backaction of the measurement apparatus need to be considered within any formalism. These issues
have partially been addressed within the energy flux formalism [19] but remain under scrutiny.

The simplicity of the energy flux formalism, however, merits the investigation of aspects scarcely explored
such as the implications of conservation laws on the nature of energy exchanges and how the framework can be
generalized to open quantum system dynamics. Conserved quantities (defined by Hermitian operators that
commute with the total Hamiltonian) and their associated symmetries are of broad interest in physics.
Moreover, transformation of symmetry-imposed constraints in open quantum systems has gained renewed
attention in recent years [22]. In this article, we discuss work and heat exchanges within bipartite systems
characterized by particular commutation relations between the local Hamiltonians and the interaction operator.
We show how conserved quantities associated to a given partition, that arise from particular commutation
relations, give rise to an asymmetric structure for the work and heat fluxes of the subsystems. We furthermore
demonstrate the consistency of the approach when one partition acquires the character of a macroscopic bath,
and extend the formalism to situations where one, or both, partitions are subject to a Markovian thermal bath.
The connection between heat, as defined in this framework, and entropy is explored in the last section. This
connection allows us to discuss the second law of thermodynamics within the energy flux formalism and
demonstrate the compatibility of the approach with the second law. The present work strengthens the energy
flux formalism and provides further evidence that thermodynamic quantities such as work and heat can be
generalized to quantum systems far from thermal equilibrium.

2. Work and heat in closed bipartite quantum systems

2.1. Review of the concepts

In this section we briefly review the division of the energy exchange between bipartitions of a quantum system
into heat and work, as put forward by [17]. Within the framework open quantum systems, the total system is
denoted as closed when it does not exchange energy or matter with an environment and is described by the
Hamiltonian H = H, + H, + Hj,.Here H, and H, are the individual Hamiltonians of subsystems I and II, and
Hj, specifies the interaction between the two partitions. Notice that in classical thermodynamics our total
system would be referred as isolated. The density matrix of the total system can be written as

p (1) = pi (1) @ p, (1) + Cr2 (1), (1

where p, (1) = Tro{p (1)}, p, (t) = Tri{p (£)} and Cy, (¢) represents the correlations between the two partitions.
We assume an initial separable state of the form p (0) = p, (0) ® p, (0), with no bipartite correlations. Starting
from the equation of motion for the total system, and taking the trace with respect to system II, the Liouville-von
Neumann equation for system I can be written as

pi(0) = =i Hy + BT (1), p (0 | = i Tof [ Hi, G0 ]}, 2)

where the effective Hamiltonian of system I is identified to be
HE (1) = TofHo[11® p, (0]} (3)

The energy changes need to be defined with respect to alocal effective measurement basis (LEMBAS), which is
determined by the experimental apparatus. This formalism assumes a LEMBAS that includes both the
eigenstates of the bare system Hamiltonian H}, and the shift in the eigenenergies of system I due to the
interaction with system II. Since H; and H™ (£) may not be compatible observables at all times, the effective
Hamiltonian is divided into two contributions

HeT (1) = B (1) + HEY (1), (4)

where Hle’f,f (f)and Hfif (t) are components of the effective Hamiltonian that commute and do not commute
with H, respectively. The commuting contribution of the interaction induces a shift in the local energy of system
L. The local basis is thus associated to measurements of the following operator

H(t) = H + Hf,if(t)a (5)

and the internal energy change of system I can be identified as
du, = Trl{pldHl’(t)} + Trl{H{(t)dpl}. (6)

We now divide the internal energy flux of system I into two contributions: the energy change that has no effect
on the local von Neumann entropy, is labelled as the work flux W, (t), whereas the contribution that alters this
entropy is identified as the heat flux Q (t). This constitutes a statement of the first law of thermodynamics for
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Figure 1. A schematic illustration of the bipartite quantum system investigated in this article. In section 2, we focus on the closed
bipartite system (without a heat bath). In section 3, partition I is subject to a thermal bath. In section 4, both partitions interact with a
thermal bath. In our notation the total heat flux into system I is written as Q1= Qo1 + QuanA — 1where Q,_, and QpanA — 1
are the heat fluxes from system IT and the bath A respectively. The work flux into system I is identified as .

partition I. The final expressions read
Wi = Ta{Fis 0p, (0 = i B (0, HE (0 ]y (0], (7)
Q) = To{H () L5 [p ()1}, (8)

where Efff p(®)] =-i Trz{ [Hia, Ci2(2)] } Note that at this point there is no assertion that work should be

something more useful that heat [21]. Importantly, entropy changes can arise without an associated heat flux as
is discussed in section 4. Heat flux can, alternatively, be expressed as

Q0 ==iTe{ [ (B0 ® 1), Ha ]ca 0}, (©)

where the cyclic invariance of the trace has been used. Similar expressions can be written for system I if
measurements are performed in the LEMBAS associated with H,.

Equations (7) and (9) merit two important observations. Firstly, work flux now has an additional
contribution due to the non-commuting part of the effective Hamiltonian in equation (4). This is in contrast to
the conventional definition that identifies work solely with the term Tr { pdHY (t)} in equation (6). Secondly,
the heat flux into system I vanishes if at least one of the following is satisfied: (i) the dynamics does not induce
correlations between the two subsystems or (ii) H, (#) commutes with the interaction Hamiltonian. Thus,
bipartite correlations are necessary, but insufficient, for the existence of a heat flux. We will discuss in section 4
the implications of this feature for the possible link between heat and entropy production in autonomous
systems.

From the above discussion, it is clear that commutation relations between the different energy operators
shape, in a non-trivial manner, the work and heat exchanges between the quantum partitions. In the following
sections we consider three possible commutation relations between H,, H, and H1,, and investigate their
consequences on work and heat fluxes. Without loss of generality, we consider an interaction of the form
H;; = A; ® B,, where A acts on system I and B, on system II. The effective Hamiltonian of system I is thus
givenby Hf™ (1) = A, (B,). All results can readily be extended to the more general interaction

Hy, = ZiAi ® B.

2.2. Fully commuting interaction
A fully commuting Hamiltonian satisfies the relation: [A;, H;] = [B,, H,] = 0. Since [Hleff (¢), Hi] = 0,we
identify H, , = H{™ (¢),and Hf;f,f = 0. Work on system I is thus given by

Wi(e) = Tr {3 (0, (0} = (A1) (B2) = 0, (10)

where we have used (M) = —i([M, H])for M = I; ® B,. Similarly, one can show that W, = 0. From
equation (9) it can be shown that the exchanged heat also vanishes, Q; (1) = Q, (¢) = 0. The energy exchange is
thus zero, as expected for a commuting interaction.

An example of such a system is provided by the spin—oscillator Hamiltonian with a dispersive interaction:
H= %OO'Z + va'a + go,a’a, where o, is the population difference operator, wy is the energy gap between the

ground and excited state of the spin, {a, a'} are the annihilation and creation operators of the oscillator, v is the
oscillator frequency and g quantifies the magnitude of the spin—oscillator coupling.

2.3. Partially commuting interaction
We define a partiality commuting interaction via the commutator properties: [H;, A;] = 0and [H,, B;] # Oi.e.
observable A, is conserved. Since [Hf™ (t), H;] = 0, we identify Hf,flf (t) = H (¢),and Hfif = 0. Workon
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system I is thus given by
Wi () = T % (0p, (0} = A1) (B2, (an

Work done on system II can be computed in a similar manner. The effective Hamiltonian of system IT is
given by H2eff (t) = (A1) B;. Unlike the previous case, H2eff (t) has no commuting contributions with H,. That s,
Hfilf = 0,and Hf)gf = H5" (¢). The work done on system Il is thus given by

Wi (t) = =i To{[ Ha (A1) B2 ], (0},

=-i Tr1,2{ [111 ® Hy, A1 ® Bz]P1 1 ® Pz(f)},

= —(A1)(By). (12)
The general work flux relation holding for any partially commuting interaction is thus
Wi(t) + Wa (1) = 0. (13)
The heat fluxes into systems I and IT are computed from equation (9), leading to
Qi(1) =0, (14)
Qa(t) #0, (15)

since [ (H| (t) ® 1,), Hy;] = Owhile[(1; ® H,(¢)), Hy;] # 0. Note that control of the system Hamiltonian
without introducing heat is reminiscent of classical driving. System II thus acts as a classical drive for system I,
while the converse is not true. Moreover, for this commutation scenario, heat flux is exclusively from system I to
system I, and the existence of correlations between the two partitions determines whether or not system I1
receives heat. This observation is a direct consequence of conservation of the observable A, and does not violate
the conservation of energy.

Under what circumstances do the correlations, and therefore Q, (¢), vanish? Note that the commutator
[H), A;] = 0, ensures that H; and A, are simultaneously diagonalizable. A; can thus be expanded in the energy
eigenbasis of H;. Denoting the eigenstates of H; by {|7) }, A; can be written as A} = Zi a;|i)(i|, where {a;} area

set of coefficients. The interaction Hamiltonian is thus given by

Hiy = Ya; |i)(i] ® B, (16)

From this Hamiltonian one can construct an evolution operator and determine the dynamics of the density
matrix p (¢) for an initially separable state p (0) = p,(0) ® p, (0). If the initial state of system I is an incoherent

mixture of eigenstates p, (0) = Zi ¢;i|7) (i, the dynamics are given by

p(1) = Wi |iy(i| @ emi(Htaiba)ip, (o) ei(Horan)e, (17)
1
The total state only remains separable if all but one of the coefficients c;, are zero. That is, when system I starts in
an energy eigenstate of H;. We conclude that the dynamics do not correlate the two subsystems, i.e. Q, (t) =0, if
and only if system I is initialized in an eigenstate.
An example of such a quantum setting is the displaced spin—oscillator Hamiltonain:

H= ?o-z + va'a + go, (a" + a), where H, = %GZ and H, = va'a. Denoting the eigenstates of the spin by {|1) }
where |i) = {|e), |g)}, for theinitial state p (0) = |i)(i| ® p, (0), the spin and the oscillator evolve
independently and no heat is being transferred to the oscillator. However, if the spin is initially prepared in a
mixed state of the form p, (0) = c|g)(g| + (1 — ¢)|e){e|, the dynamics correlate the two subsystems,
generating a heat flux into the oscillator. To illustrate the latter point, let us assume that the oscillator is initially
prepared in a coherent state, while the spin is prepared in a mixture of eigenstates. This example was considered
in [19] and the authors conclude that there is no build up of correlations between the spin and the oscillator. In
the remaining part of this section, we demonstrate that this conclusion is incorrect; although the heat flux into
the spinis zero (Q, = 0), there is finite heat flux into the oscillator (Q, # 0) for an initial mixed state of the spin.
The state of the spin and the oscillator may therefore become (classically) correlated. For this initial state, the
work flux into the spin can be shown to be

Wi(r) = g(1 = 20)(x(1)), (18)

where x = a + a'. We assume an initial coherent state denoted by | ) with displacement x( = Re[ay]and
zero initial momentum, p, = Im[a] = 0. The evolution of the density matrix of the oscillator is given by

p (1) = cPla(t))(a(t)| + (1 = ) ]aw(t) }{as(1)], (19)
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where |, (t)) and |a_(t) ) are the displaced coherent states:

las (1) = exp{—i(vaTa +g(a+ aT))t} o). (20)
The expectation value of the position of the oscillator is given by
(x (1)) = c(Xa) + (1 = ) (X)) (21)

The expectation value of the oscillator velocity is the quantity of interest for evaluation of the work flux and can
be shown to be

(1) Yaur) = 20 sin(yt)(xo + %) (22)
where the coupling gis also assumed to be real. The final expression for the work flux into the spin thus reads
Wi(t) =2¢(1 — 26)[1/X0 + (1 - 2c)g] sin(vt). (23)
The corresponding heat fluxes are found to be
Qi(1) =0, (24)
Q,(t) = 8c(1 — ¢)g? sin(vt). (25)

The heat flux into the oscillator is independent of the initial displacement of the oscillator and is maximum for a
maximally mixed initial state of the spin (¢ = 1/2). The work flux, however, is maximized for an initially pure
state (c= 1 or ¢ = 0). The initial state of the spin thus serves as a control parameter that will determine the nature
of energy exchange between the two subsystems.

2.4. Non-commuting interaction
This scenario is characterized by the commutators: [A;, H;] # 0,and [B,, H,] # 0. From the effective
Hamiltonian of system I, we identify Hfflf (t) = 0,and Hff,f (t) = Hf™ (). Work on system I is thus given by

Vi (6) = =i Tuf [ Hy HEE () |y (0], (26)
and similarly for system IT: W5 (t) = —i Trz{ [H,, Hfﬁ,f ) 1p, (t)}. Heat flux into system L is given by
Q0 = =i Tr{[ (M ® 1), Ho |0}, 27)

Similar expressions can be obtained for system II. The heat fluxes Q, (t) and Q, (t) are, in general, non-vanishing
and unequal. As the dynamics always correlate the two subsystems, regardless of the choice of the initial state,
C1, (t) cannot be zero for all t. If the condition [H;, H;,] = —[H,, H,,]is satisfied, however, the net heat and
work fluxes will be zero, thatis Q; (£) + Q,(t) = 0and W, (t) + W4 (t) = 0.

The Jaynes—Cummings model with the rotating wave approximation is an example of such an interaction:
H= %oaz + va'a + g(o,a + o_a"), where 6, and o_ are the raising and lowering operators of the spin. The
condition [H), Hj;] = —[H,, Hj,]translates to an oscillator that is on resonance with the spin, v = @j.

3. Generalization to open systems

3.1. One partition becomes a Markovian bath

In this section we demonstrate that heat flux into system I converges towards known results, in the limit that
system II acquires the character of a macroscopic Markovian thermal bath. The exact equation of motion for
p, (t)is given by

pr(0) = =i [ Hiy py (1) | T Hioy p (1) ], (28)
Recalling that p (t) = p,(t) ® p,(t) + Cy2(t), we obtain
p () = =i [Hi pi ()] =i T Hip, py (1) @ p, (1) + Cia(®) |- (29)

As system IT is now a thermal bath, we make the substitution p, (t) — pjy (t) and assume a general system—bath
interaction of the form Hjz = X; ® Y3, such that

pl (t) = — I[Hl + X1<YB), pl(t)]—l TI'BI:ng, CIB(t)] (30)

For weak system—bath interactions, the expectation value (Y3 ) can be approximated by its initial thermal value.
The term X; (Yp) thus represents a bath-induced renormalization of the system energy. For brevity we assume
(Y) = 0.Bath operators are often defined to have vanishing fluctuations such that the influence of the bath can
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be entirely characterized through a two-time correlation function [23]. This is true for a thermal bath, provided
that [Hp, Y3] # 0. The case of constant ( Y3 ) renormalizes the system Hamiltonian and should be accounted for
in the derivations that follow. Consistency demands that the second term in equation (30) approaches a
Lindblad dissipator in the Markov limit:

~i Tag[ i, Cu () |2, [ (0] (31)

This indicates that, even in the Markov limit, the existence of system—environment correlations is crucial for
transfer of heat. The heat flux then takes the expected form in this limit, i.e. Q, (£) = Tr, { H Ly [p (1)] }

Equation (31) implies that system—bath correlations are not absent in the Markov limit. Note that there is no
contradiction between this observation and the Born approximation used in the derivation of Markovian master
equation, which assumes separability of the state of the system and the bath, p = p () ® p,. Indeed, the Born
approximation does not imply that there are no excitations in the bath caused by the system [23]. The
combination of the Born and the Markov approximations provide a description on a coarse-grained time scale.
The assumption is that environmental excitations decay on a time scale that is much faster than the time scale of
the system dynamics, and thus cannot be resolved. Over this coarse-grained time scale, the state of the bath can
be assumed to be approximately constant, and the system—bath correlations can be neglected. In actuality, build-
up of correlations between the system and the bath leads to loss of phase information from the system. Care
therefore must be taken in applying the Born approximation outside the scope of the derivation of the
Markovian master equation.

3.2. One partition interacts with a Markovian bath

The notion of a quantum system that serves as a time-dependent drive for a second quantum system, can still be
applied if either, or both, partitions interact with a bath. In this section we present this generalization to open
quantum systems. Again, note here the semantic difference with classical thermodynamics where such system
would be denoted as ‘closed” indicating that it may exchange energy (but not matter) with a bath. Consider an
open bipartite system, where only one partition (always I) interacts with a Markovian bath. The Hamiltonian of
the total system, including the bath, can be written as

H=H, + H,+ H,+ Hg + Hyp, (32)
where Hyis the bath Hamiltonian and H; g describes the interaction of the bath with partition I. The action of the

bath is described by a Markovian dissipator in the Lindblad form L, [p, ], and the equations of motion for p, (¢)
and p, (t) now read

() = =i Hi+ HT (0, p (0 | + L5 [p (0] + Lilp)], (33)
Py () = =i[ Hy + H5" (1), p, () | + L5 [p()]. (34)
The heat flux to system I now has an extra contribution due to the bath:
Q0 =To{H O LT M1} + TofH (L[ p (0 ]}, (35)
Q1) = To{H O LS (1)1}, (36)

We consider the case where [H] (¢), Hyg] # 0, such that the bath can exchange energy with system [, and
investigate the modifications to the work and heat flux relations derived in section 2. We will not discuss the heat

flux from system I to the bath, but note that, unless for special cases, its magnitude cannot easily be deduced
from Q, (¢).

3.2.1. A fully commuting interaction: [H;, H,] = 0,1 = {1, 2}.
Unlike the corresponding closed system scenario (section 2.2), the work and heat fluxes on the subsystems are
unequal prior to equilibration and are given by

Vi (6) = (B2 (0)(41(0) = 0, (37)
Wi (1) = (B2 (1) (i (1) = (B2 (0) Tn{ AL p (0 ]} (38)

Interestingly, the bath-induced relaxation of the operator (A (¢) ) is manifested as a work flux on system II until
(A;(t)) = 0atthermal equilibrium. As for heat we obtain

Q) ={HOL[n0]}, (39)
Q:(1) = 0. (40)
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The heat flux Q, (¢), is maintained until system I is thermalized, at which point Q; (t) = Q,(¢) = 0. The
dispersive spin—oscillator Hamiltonian with the spin exposed to a heat bath provides an example of this scenario:
H = va'a + w0, + ga'ac, + Hp + H,p, where Hy = Zk wib{b,and Hig = 0, ® Zk Ak (b + b). The
interaction of the spin with the bath will result in (i) a net transfer of heat to the spin and (ii) coherent energy
transfer from the spin to the oscillator. For instance, the oscillator can represent the mechanical mode of a
resonator, the spin a two-level atom, and the bath the background radiation. The relaxation of the atom is
subsequently manifested as a net work flux on the resonator.

3.2.2. A partially commuting interaction.
Given that in our analysis the bath always interacts with system I, we consider two different scenarios of a
partially commuting interaction to cover all possibilities.

Case 1. [H,, Hy;] = 0, [H,, Hj»] # 0. Work fluxes in this case are given by

Wi(t) = =Wi (1) = (A1)(By). (41)

The condition W, (t) + W, (t) = 0is thus still satisfied (cfequation (13)) despite the addition of the thermal
bath. The heat fluxes are modified as follows

Qi) = Ta{H @ L[ p, (0 ]}, (42)
Q0 = =iTr{[ (L@ H (), 2 |Cia (0}, (43)

In the corresponding closed scenarios, we observed that heat flux is solely into system II. This observation is no
longer valid for the open system prior to thermal equilibrium.

An example of such an interaction is provided by the displaced spin—oscillator Hamiltonian with the spin
exposed to abosonicbath: H = %O‘z + va'a + go,(a" + a) + Hp + H,p, where
Hp=0:® Zk Ak (b + by)).

Case2.[H,, Hy] # 0, [Hy, Hjp] = 0. The work flux takes the same form as the previous case, but the heat
flux is now exclusively into system I:

Q@ ==1e{[ (h® H®). Ha|co 0} + Ta{m O L[ n 0]}, (44)
Q:(1) =0. (45)

An example of such a system is provided by the spin—oscillator model where now only the oscillator interacts

with a bosonic bath, thatis, H = %GZ + va'a + go,(a" + a) + Hp + H,p, where
Hyp=(a+a) ® Y Aby+ b))

3.2.3. A non-commuting interaction.
For a fully non-commuting interaction, work flux associated to each subsystem is given by
W (t) = =i Trj{[Hj, Hfj (t)]p;(£)}. The heat fluxes take the form

Qi(t) = —iTl’{ [ (Hl ® le)); H12:|C12(t)} + Trl{Hl/(t)[:l[pl(t)]}: (46)
Qx (1) = —iTr{ [ (Jll ® Hz), le]clz(t)}- (47)
Similar to the finite system case (section 2.4), if [Hy, Hy;] = —[Hy, H, ], then Wi (t) + W (t) = 0. At thermal

equilibrium, where the heat flux due to the bath vanishes, this condition also implies that Q, (t) + Q(t) = 0.
The Jaynes—Cummings model is an example of such an interaction:
H= %GZ + va'a + g(oa + 6_a') + Hp + H,p. The bosonic bath can interact with either the spin [e.g.:

Hip =0, ® Y, Ak (bx + b{)] ortheoscillator [e.g: Hip = (a + a") ® Y, Ak (b] + b)].

3.3. Each subsystem interacts with a bath

The present treatment can readily be extended to the case where both sub-systems interact with a thermal bath.
We will only consider the case of the fully-commuting interaction for brevity, but the theory can
straightforwardly be applied to all cases. Consider a bi-partite system where each partition interacts with its own
Markovian bath. The total Hamiltonian is given by

H=H1+H2+H12+HBI+HBZ+H13+H23, (48)

where Hp, and Hp, are the bath Hamiltonians, while H, g and H,jp specify the system—bath interactions. The
action of the two baths is described by the Markovian dissipators £, [p,]and L, [p, ]. The equations of motion
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for the partitions now take the form
p; (0 = =i Hy + HT (1), p,(0) | + £5F (0] + £,] ;] (49)

For the fully commuting interaction, work fluxes are given, W, = (B, (t) (A, (t)), W5 = (B, (t) )(A(t)), while
the heat flux takes the form Q i(t) = Trj{H ]’ ®L;p i (t)]}. In the steady state, energy conservation and
vanishing work fluxes mean that all energy fluxes are zero. For the fully non-commuting interaction, however, it
can be shown that a finite heat and work flux can be maintained in the steady-state. Even with a fully commuting
interaction, more elaborate designs consisting of multiple baths of different temperatures can be utilized to
engineer thermodynamic devices capable of maintaining a constant heat flux in the steady state. For instance,
there are prototype thermoelectric devices consisting of two interacting quantum dots coupled to three thermal
reservoirs [24]. The coupling between the quantum dots is a Coulombic repulsion and therefore a fully-
commuting interaction. It has been demonstrated both experimentally [25] and theoretically [24] that this
design aids the extraction of energy from a temperature difference while avoiding any direct connection between
the hot and cold reservoirs along which heat might flow.

4. Entropy change and the second law

In [17] itis argued that entropy and heat flux in a finite quantum system are related via the expression
dS; = f*dQ, (50)

where dS; is the change in the von Neumann entropy of system I and £* is defined to be an effective inverse
temperature. This definition is inspired by analogy with classical thermodynamics and was used to demonstrate
agreement with Clausius relation for systems at thermal equilibrium. There is, however, a problem with this
identification as counterexamples to equation (50) may be found where the heat flux is vanishing (dQ; = 0), but
the entropy flux is finite (dS; # 0). To illustrate this point, consider the scenario discussed in section 2.2 where
both subsystem Hamiltonians commute with the interaction. In this case, there is no heat flux into either of the
partitions, yet the local entropy of system I can still change, provided that it has an initial coherence and that
partition IT does not start in an energy eigenstate. In appendix we show that if these two conditions are satisfied,
the evolution of partition I is non-unitary, and its local entropy is oscillatory, despite the lack of a heat flux, and
in contradiction with equation (50).

Clearly, a different line of thought ought to be followed to reconcile the energy flux formalism with the
second law. For an initial separable state p (0) = p, (0) ® p, (0), evolving under the Hamiltonian
H = H, + H, + H),, Esposito etal [26] have demonstrated that the change in the von Neuman entropy of
system I, between t=0and t = 7, can be expressed as

AS () = Si(7) — S5 (0)
= D[ﬂ () ”pl(T)pz(O)] + Tr { [Pz (7) - pz(O)]ln P2 (0)}, (51)

where D [p, ||p,] = Trip, In p;} — Tr{p, In p,} is the relative entropy. This expression is derived from the
conservation of the total entropy with the sole assumption of the separability of the initial states. The first term in
equation (51) is the irreversible contribution to the entropy change and is known as the entropy production. The
second term is the reversible contribution to the entropy change. It quantifies the exchange of heat and results
from the reduced dynamical evolution of system II. The entropy change can therefore be written in the standard
thermodynamic form AS,; (z) = ASlir + AS[¢ with

As"(x) = D[ p(@) lpy(2)p,(0) ], (52)
485 (2) = Tr {[ p,(2) = p,(0) |n p, (0)}. (53)

Since the relative entropy is positive, equation (52) indicates the positivity of the entropy production, i.e.:
ASIir (7) = 0, thus fulfilling the second law of thermodynamics [23, 27].

Equations (52) and (53) can also be used to investigate any possible links between heat and entropy. Clearly,
equation (53) cannot be identified with a heat flux. In classical thermodynamics the association between heat
and entropy holds for reversible entropy exchanges and is defined for a thermal initial state. Equation (52) shows
that this association is not correct for the general quantum setting. The irreversible entropy is due to correlations
between the two partitions that may arise independently of a heat flux. We therefore conclude that the direct
association between heat flux and entropy change, as suggested by equation (50), does not hold in general.

As an example, equations (52) and (53) can be used to analyze the entropy flux for the commuting
interactions (section 2.2). From equation (52), we conclude that AS;© (z) = 0, provided that system Il is initially
in a statistical mixture of its energy eigenstates. The heat flux is also zero for commuting interactions. Yet, if
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Figure 2. (a) Heat and work contributions to the total energy change AU, (7) of a two level system as it interacts with a single harmonic
mode. (b) Reversible and irreversible contributions to the change in the von Neumann entropy of the two level system. Parameters are
T=300K, @y = 150 cm™}, V=50 cm™!, v = 180 cm™},and g = 50 cm™.

system I possesses some initial coherence, the dynamics would correlate the two partitions and the entropy
production AS,"(z) would exhibit oscillations.

To explore further possible relations between AS; () and AQ, (), we consider the non-commuting case
where a two-level system interacts with a single harmonic mode. This spin-boson type Hamiltonian is given by
H= (%GZ + Vo, )+va'a + go,(a + a'), with bias @y, tunnelling amplitude V, mode frequency v and
system—mode coupling strength g. The spin is initially assumed to be in the excited state while the oscillator is
initially in a thermal state at a temperature 7. For these initial conditions the reversible entropy change quantifies
the energy change of system IT and becomes AS[ (7) = —f,((Ha). — (Ha)o)with , = 1 /T Notice that this
energy change for system Il is not trivially related to the heat flux into system L. Figure 2(a) displays the heat and
work contributions to energy changes of the spin (parameters provided in the caption of figure 2), indicating
there is predominantly a negative heat flux into the spin i.e. the system is ‘cooled’. The reversible and irreversible
contributions to entropy change of the spin are displayed in figure 2(b). AS; () is negative indicating that as the
spin and oscillator become correlated, the latter evolves towards a non-thermal state with an average energy
larger than its initial energy. Although AS, (7) resembles some features of AQ (z), such as its negativity and the
position of some of the extrema, a proportionality relation of the form of equation (8) in [26] does not follow
straightforwardly. We conclude this section by noting that although entropy production is positive its derivative
can be negative. This is a direct consequence of the non-Markovian nature of the reduced dynamics of system I,
and positivity of the rate is recovered in the Markov limit [26].

In the section, we have demonstrated that the energy flux formalism satisfies the second law of
thermodynamics. By partitioning entropy changes as proposed in [26], the positivity of entropy production
within the heat flux formalism is demonstrated. The direct relation between heat and entropy suggested in [17]
is incorrect in general.

5. Conclusions

In this article we have considered internal exchange of energy in bipartite quantum systems and have
investigated the consequences of the partitioning introduced in [17] for different commutations of the
interaction and the bare Hamiltonians. A generalization of the formalism to Markovian open quantum systems
was also presented and the consistency of the formalism with the second law of thermodynamics was discussed.

From a classical standpoint exchange of heat and work have distinct physical origins; work is exchanged due
to the action of an external drive. Heat, on the other hand, is exchanged with a thermal bath. The present
formalism connects these two scenarios and states how each situation arises in a particular limit of the general
bipartite system.

Optomechanical implementations provide the ideal platform for the investigation of energy transfer
between quantum mechanical systems [28] and the prototype spin—oscillator models can readily be
implemented in such a setting. Nano-scale thermoelectric devices comprised of quantum dots interacting with
thermal reservoirs are alternative systems in which the interplay of quantum mechanical and thermodynamic
principles can be investigated [24, 25]. There are, however, still issues associated with the measurement of the
aforementioned fluxes and the practical applicability of the energy partitioning on the entropy fluxes requires
further investigation.
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Appendix

In this appendix we demonstrate that the reduced dynamics under a fully commuting interaction can be non-
unitary. We consider the Hamiltonian H = H, + H, + Hj,, where [H), H,] = [H,, Hj;] = 0. The interaction
Hamiltonian can be writtenas H = A; ® B,, where A, acts on partition I and B, on partition II. H; and A, can
be expanded in the energy eigenbasis of system I. That is

Hy= Y ei lei) (el (54)
Ay = Y aile)eil, (55)

where {|¢;) } are the eigenstates of system I with eigenenergies {¢;}, and {a;} are a set of coefficients. Similarly, we
expand H, and B, in the eigenbasis of H,

Hy = ) ExlEx)(Eel, (56)
B, = zbk|Ek><Ek|’ (57)
k

where {|E; ) } are the eigenstates of system Il with eigenenergies {Ey } and {b; } are a set of coefficients. The
reduced dynamics of partition I is given by p, (t) = Tr{exp (—iHt)p (0) exp (iHt)}. We expand the
Hamiltonians and arrive at the following final expression

p(t) = Ze_i(“_”)te_i(“"_””b“|€i) (€il p1(0)|e;)(ejl @ (Ekl| p,(0)|Ex). (58)
ijk
Unless partition IT starts in an energy eigenstate, the dynamics of coherences (¢;|p, (t)|€;) are non-unitary. We
therefore conclude that p, () exhibits non-unitary dynamics provided that system II is not in an energy
eigenstate at = 0, and system I possesses some initial coherence. Non-unitary dynamics give rise to a time-
dependent von Neumann entropy for system I.
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