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We propose a physically realizable machine which can either generate multiparticle W-like states, or
implement high-fidelity 1 — M (M = 1, 2, - - - o) anticloning of an arbitrary qubit state, in a single step.
This universal machine acts as a catalyst in that it is unchanged after either procedure, effectively resetting
itself for its next operation. It possesses an inherent immunity to decoherence. Most importantly in terms
of practical multiparty quantum communication, the machine’s robustness in the presence of decoherence
actually increases as the number of qubits M increases.
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Quantum mechanics provides two remarkable “‘laws”
concerning what is and is not possible in our Universe. The
linearity of quantum mechanics implies it is impossible to
copy an arbitrary quantum (qubit) state [1], no matter how
ingenious the experimental scheme. The unitarity of quan-
tum mechanics implies that there is no quantum device, no
matter how well built, which can perfectly transform an
arbitrary qubit state into its orthogonal complement [2,3].
In practice, however, it is possible to clone and comple-
ment qubits with reasonably high fidelity [3,4]. Indeed
these two processes appear to be closely related [3]: opti-
mal 1 — 2 cloning (i.e., partial copying from one to two
qubits) and the universal NOT of photon polarization states,
can both be performed using the same unitary transforma-
tion [5,6]. A combination of copying and complementing
might even lead to optimal entangling transformations [7].
The connections between these two quantum processes are,
however, not well understood either in theoretical or prac-
tical terms. This Letter provides a concrete connection
between quantum copying, complementing, and entan-
gling operations, by proposing a specific multiqubit-cavity
scheme in which the same unitary transformation can be
used to produce both multiqubit W-entangled states and
high- (in some cases optimal) fidelity 1 — M anticloning.
Our results and conclusions are valid for any number of
qubits M [8].

The physical implementation of our scheme offers sev-
eral important advantages and features. First, the cavity
acts as a catalyst in that its state is unchanged after either
procedure—in short, our machine acts as its own reset
button. Second, the machine has an inherent immunity to
decoherence effects: the entangling and anticloning opera-
tions become increasingly robust as the number of qubits
M increases, in contrast to typical quantum information
schemes whose performance would deteriorate as the num-
ber of degrees of freedom increases. Third, our machine
avoids the need for carefully engineered nearest-neighbor
interactions [9], multiple cavities and/or gate operations
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[10,11]. Our multiqubit-cavity machine can be built using
current atom- or ion-cavity technology [12,13], or next-
generation solid-state-qubit-cavity technology [14].

The Hamiltonian for the M-qubit-plus-cavity system in
the interaction picture and rotating-wave approximation
(h=1)is

M
H, = Z yilato; + ofal, (1)
=

where a'j+ = [1,X0;1, o= |0,)(1;| with |1;) and [0;)
being the excited and ground states of the j'th qubit. at
and a are cavity-photon creation and annihilation operators
while {y,} are the set of (in general unequal) qubit-cavity
couplings. Since [H;, N]=0 where N =afa+

M o} o is the excitation number operator, the dynam-
ics is separable into subspaces having a prescribed eigen-
value N of N. In the subspace with N = 0 there is only
one state o) = 10,05, 05 - - 04;;0) while in the N = 1
subspace, the basis states are

[¢1) = 111,05 --04:0) = [Q)) ® |0)
[2) =10y, 15+ -+ 04450y = |Q5) ® |0)

() =101,0,-1;,---0,:0) = 1Q;) ® |0)
|rr+1) = 101,05+ -0y, 1) 2

where the last label in each ket denotes the photon number
in the cavity. In this N = 1 subspace, the system’s state at
time 7 is |W(2)) = U(z, 0)|W(0)) where U(z, 0) in the basis
of states {|¢p;) - - - |y 1)} is given by Eq. (3). Here, we
define the effective collective Rabi frequency of the M
qubits as w® =Y, y3, and B = sin*(wt/2)/w*. We
proceed to show how to build our machine using this
temporal evolution:
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—iy; sin(wt)/w

Consider an initial product state where one of the qubits
(e.g, j=1) is in a coherent superposition |g;(0)) =
sin(6/2)|0,) + e'“ cos(#/2)|1,) with the others unexcited:

|W(0)) = 1g,(0)) ® [0, - - - 043 0)
= sin(0/2)| o) + €' cos(6/2)¢1).  (4)
Using Eq. (3) yields
W (1)) = sin(6/2)| o) + e cos(8/2)| 1 (1)) (5)

with

.1 sin(w?)

M
|1 (1) = Z Uj(010;)®0) — lT|¢M+l>- (6)
=

When wt = mm = w7 (m odd) a vacuum trapping state
condition is achieved: the cavity state is unchanged overall
and becomes fully separable from the multiqubit subsys-
tem. However, its catalytic action has induced entangle-
ment into the initially unentangled multiqubit subsystem.
Because of the cavity’s inertness at r = 7%, we will drop the
cavity state notation. Consider the following examples: (i)
6 = 0, which will yield one-step W-state generation; (ii)
0 = /2, which will yield optimal quantum anticloning.
(i) Using 8 = 0 yields

M
[P(r)) = (1 = 29}/ @) Q1) = 2y1 /@) D ;10 ()
=2

In general, an M-qubit W state cannot be generated using
identical couplings y; = y. However for nonidentical cou-
plings, the qubit-exchange symmetry is broken, thereby
allowing control over the degree of entanglement and the
final state symmetry. Suppose y; # y; = y forall j > 1,
and define r = y;/y. The collective qubit frequency is
w =7y +M-—1)"?and

M
[W(7)) = a\()IQ1) + a(7) Y 1Q)) @)
=

where
M—-—1-—7 —2r

w1+ Ty ©)

alr) = e,

Two W states of M qubits can now be generated for
a,(7*) = *a(7*), yielding an optimal coupling ratio rj; =
VM = 1. Here rj;, correspond to symmetric and antisym-

metric states with respect to exchange of qubit 1 with any
other. The corresponding state is

—iy, sin(wt)/w

—2y1YuPB —iy; sin(wt)/w
—2v,YuPB —iy, sin(wt)/w
: . (3)
1—2y3,8 —iyy sin(wt)/w
—iyy sin(wt)/w cos(wt)
. ein’ M
[W(r)) = W) = TM[tlQ» + J; |Q,,->} (10)

For M = 4, both r =1 and r = 3 produce a fully sym-
metric W state. However in the many-qubit limit M — oo,
it is only for nonidentical couplings (ry = /M) that we
can generate a multiqubit W entangled state. This state is
important for quantum information protocols since the
excitation has equal probability of being found on any
qubit. For M = 3, a fully symmetric W state of M — 1
qubits can also be obtained when a;(7*) = 0, yielding
riwr = /M — 1. The initial excitation gets transferred to,
and shared among, the remaining M — 1 qubits.

(ii) Using 6 = /2 enables us to anticlone (i.e., copy the
orthogonal complement) of the state of qubit 1 (i.e., the
input qubit) to the target qubits (i.e., the M — 1 qubits
initially in state |0)). Since the initial state of qubit 1 is
in the equatorial plane of the Bloch sphere [see Eq. (4)], we
call this process phase-covariant anticloning in analogy
with phase-covariant cloning (PCC) [15]. An ideal anti-
cloning process is defined as [2]

19)al0)5 DY = 1g1)al gL )1 Douc (11)

where |g), is the initial state of the input qubit, |0), is the
initial state of a target qubit, {qlg*) =0, and |D),, and
| D), are the input and output states of the copying device.
Ref. [15] showed that the optimal fidelity for I — 2 PCC is
Forr=1[1+ %] Here we demonstrate that the fidelity of

our 1 — 2 anticloning equals this optimal value. We also
show that there are two protocols to achieve this process,
the main difference being the final state of the input qubit.
For an arbitrary number of output qubits M with asymmet-
ric couplings, we find that the fidelity of the anticloning
operation is comparable to that obtained for a XY spin star
network [9] and reaches larger values than for the case of
identical couplings. The state of the system is now
[P(r)) = %[Igbo) + ei@|¢,(¢))] and the reduced density

matrix of the j'th qubit reads

1
Pj(f) = E[(Z - |Ujl(f)|2)|0j><0j||Ujl(f)|2|1j><1j|Uj1(t)

X (e7"10;(1;] + e™[1;X0,1)] (12)
The fidelity of copying |G) = (1/+/2)[|0) + e'#|1)] to the

jthqubit, is  F(0) ={glp;lg) = 3{1 + U; (1) X
cos(a — w)}. For a target qubit, at t = 7%,
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. 1
j:j>1(7-*) = 5{1 —2v1y; cos(a — p)/ @}, (13)

hence the fidelity is greater than 1/2 when the state that has
been copied corresponds to the orthogonal complement of
the input state (anticloning), i.e., &« — u = 7. Figure 1
shows the fidelity of a target qubit and the input qubit
(inset) as a function of the number of qubits. For coupling
ratio ry;, the input qubit finishes entangled with the target
qubits, i.e., |¥(r)) = %[Iqﬁo) + e'®|W3;)] such that the
fidelity of the input qubit (see inset) equals the fidelity of
the target qubits. Hence we obtain M outputs (including the
input qubit) with fidelity F* = 1[1 + ﬁ] = F/. For
M =2, we obtain Fj,_, =3[1+ %], which equals the
optimal value for the 1 — 2 PCC [15]. Remarkably, such
optimal transformation combines two operations in one
step: complementing the original qubit’s state and copying.
We also note that this optimal fidelity is achieved for the
same conditions (i.e., coupling ratio and time) under which
two-qubit maximally entangled states were found [8],
hence establishing a direct connection between optimal
anticloning and maximal entanglement. For ry,, the fidelity
of the target qubits equals F* but the fidelity of the input
qubit is always less than 1/2, i.e., F; = %[1 — \/LA—/[] which

is undesirable for a single qubit NOT operation. For ry, =
VM — 1, we obtain M — 1 outputs with fidelity F5P =

%[1 + \/A%] while the fidelity of the input qubit equals 1/2

irrespective of the number of qubits (see inset). This is
because the input qubit ends in its ground state and sepa-
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FIG. 1. Anticloning fidelity as a function of the number of

qubits M. For the target qubits (j > 1), Fden(7*) = %[1 + %]
denotes the case of identical couplings, F*(7*) = 3[1 + ﬁ]
denotes the case where ry; = VM *+ 1, and Fep(r*) = %[1 +
\/Aﬁ] denotes the case where ry» = +/M — 1. Inset: Fidelity of
original qubit F, for r = 1: Fiden(7*) = 1/M, ryj: Fi(7%) =

= \/LM]’ and ry: F1P = 1/2. All results are evaluated at the

trapping time t = 7",

rated from the rest, i.e., |\I'(T*)>=|01>®%X

(o) + €Wy )] with [hg) = 10,, 03, ... 0y). For M =
3 we obtain 1 — 2 anticloning with optimal fidelity F°P
for the target qubits. In general, F*(M) = F*P(M + 1)
which means that there exist two protocols for obtaining M
outputs with high fidelity: (i) M qubits and r = ry},, and (ii)
M + 1 qubits and r = ry». The main difference between
these two protocols is the operation time 7° = 7/ w: it is
shorter for the ry, case since w(rj;) > @(ry»). For a large
number of outputs, this difference is negligible since ry, =
ry. Interestingly, the operation time decreases with the
number of anticlones, implying that the protocols are
robust in the presence of decoherence. We confirm this
robustness in more detail below. In both cases ry; and ry,
the fidelity of the one-step anticloning procedure is com-
parable with that reported for cloning operations using a
XY spin network [9] since it depends on the number of
outputs M as 1/~+/M. In the case of identical couplings, the
fidelity of the target qubits is F%" = 1[1 + 2] which is
always less than 5 as well as being less than F= for
M > 4. This behavior is comparable with that of a
Heisenberg spin network since it depends on the number
of outputs M as 1/M [9].

Decoherence will arise through two main channels:
qubit dipole decay at rate I', and cavity decay with rate
k. A single trajectory in the quantum jump model [16] is
well suited to evaluate the effects on the fidelity at the
trapping time. We suppose that the photon decays are
continuously monitored, and that the single trajectory is
specified by the evolution of the system conditioned to no-
photon detection. The conditional dynamics satisfies the
dissipative Hamiltonian

M
H=H,—-il Z olo; — ikata. (14)

=
The (unnormalized) conditional state |¥.,q(2)) =
0, 0lwO) =S¥ b,0l¢)  with 0,0 =

exp[—iﬁt] and || P(0, £) = |W,onq(2)) |I> being the proba-
bility of not detecting a photon in the interval (0, r). The
conditional state becomes

M
|Weona(?)) = by(0) 1) + b(2) Z |¢;) + bys1(Dldpar1)
=

(15)
where
bi(t)=1+rb(?)
b(t) =ae "[—-1 + e(F*K)’/Q(v +(k —Du/Q)]

by (1) = —2iwJrae T2, /Q) (16)
with o = y,y/w?, 40> — (k —T1)?, u=

sin[Q¢/2], and v = cos[Q¢/2]. An immediate and remark-
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FIG. 2. Fidelity of the state obtained at 7, = 27/Q with

respect to the pure state obtained at 7 [F,(7)] as a function

of the number of qubits M. Two cases are shown: ry; (triangles)

and ryy (circles). Inset: Probability of no-photon detection dur-
ing interval (0, 7). Here k = 0.02y and I' = 0.001.

able conclusion from this calculation is that the vacuum
trapping condition (i.e., bj—p; = 0but by # 0) still
arises. Moreover, it will arise for any number of qubits.
This implies that the effects we have discussed are not just
robust against decoherence: they are to a great extent
immune to decoherence since by, is strictly zero at
the renormalized trapping time 7, = 2m/{) with m odd,
for any M. We now turn to the state fidelity F', with respect
to the pure system’s state at = 7" [see Eq. (8)], i.e., F, =
|<\P(t = T*)lq}cond(t = TZ)>| where |\I,c0nd(t = T;» de-
notes the normalized conditional state. Several interesting
features arises from the interplay between I" and «. For the
situation in which I' = «, the fidelity F, equals unity for
any value of r and at any time. This is due to the fact that
the non-HermiAt,ian operator accounting for the dissipative

interaction in H, is just the excitation number operator (i.e.,
—iI'N') hence the conditional state becomes |W¥,4(£)) =
e "W (7)) and P(0, t) = e 2", Therefore the decoherence
sources can effectively be combined to produce a negli-
gible net effect. This feature becomes more prominent as
the number of qubits increases—see Fig. 2. The state
fidelity F, with I # «, is shown in the two cases in which
it is possible to either generate symmetric W entangled
states or to obtain M anticlones with high fidelity: ry» and
ryy- In both situations the state fidelity moves closer to
unity as the number of qubits increases, since the time
interval required to achieve the desired state becomes
shorter. Higher values of fidelity are obtained for the
symmetric case ry, than in the ry, case. This effect can

be better appreciated for a small number of qubits. The
probability of not detecting a photon in (0, 75) does not fall
below 0.97 for M = 2 and becomes even closer to unity for
higher numbers of qubits (see inset of Fig. 2). This again
shows how efficient our protocols for entangling/anticlon-
ing are, and concludes the justification of the claims in this
Letter.

The experimental control of the qubit-cavity couplings
required by our scheme can be achieved by controlling the
position of the qubits with respect to the field mode profile.
For instance, optimal 1 — 2 anticloning with M = 3 re-
quires the two target qubits to be located in equivalent
positions while the initially excited qubit is placed else-
where such that ry, = V2. Such deterministic control of
the variation of the qubit-field coupling strength has al-
ready been demonstrated in ion-cavity schemes [12]. In
addition, controllable strong coupling between a single
microwave photon and a superconducting qubit has re-
cently been demonstrated [14]—this suggests a novel
solid-state implementation of our scheme is also feasible.

In summary, we have shown how asymmetric cavity-
qubit couplings can be exploited to perform robust, high-
fidelity entangling and anticloning operations in a physi-
cally realizable multiqubit system.
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