5 research outputs found

    Characterization of wastewater methane emission sources with computer vision and remote sensing

    Get PDF
    Methane emissions are responsible for at least one-third of the total anthropogenic climate forcing and current estimations expect a significant increase in these emissions in the next decade. Consequently, methane offers a unique opportunity to mitigate climate change while addressing energy supply problems. From the five primary methane sources, residual water treatment provided 7% of the emissions in 2010. This ratio will undoubtedly increase with global population growth. Therefore, locating sources of methane emissions is a crucial step in characterizing the current distribution of GHG better. Nevertheless, there is a lack of comprehensive global and uniform databases to bind those emissions to concrete sources and there is no automatic method to accurately locate sparse human infrastructures such as wastewater treatment plants (WWTPs). WWTP detection is an open problem posing many obstacles due to the lack of freely accessible high-resolution imagery, and the variety of real-world morphologies and sizes. In this work, we tackle this state-of-the-art complex problem and go one step forward by trying to infer capacity using one end-to-end Deep Learning architecture and multi-modal remote sensing data. This goal has a groundbreaking potential impact, as it could help estimate mapped methane emissions for improving emission inventories and future scenarios prediction. We will address the problem as a combination of two parallel inference exercises by proposing a novel network to combine multimodal data based on the hypothesis that the location and the capacity can be inferred based on characteristics such as the plant situation, size, morphology, and proximity to water bodies or population centers. We explore technical documentation and literature to develop these hypotheses and validate their soundness with data analysis. To validate the architecture and the hypotheses, we develop a model and a dataset in parallel with a series of ablation tests. The process is facilitated by an automatic pipeline, also developed in this work, to create datasets and validate models leveraging those datasets. We test the best-obtained model at scale on a mosaic composed of satellite imagery covering the region of Catalonia. The goal is to find plants not previously labeled but present in wastewater treatment plant (WWTP) databases and to compare the distribution and magnitude of the inferred capacity with the ground truth. Results show that we can achieve state-of-the-art results by locating more than half of the labeled plants with the same precision ratio and by only using orthophotos from multispectral imagery. Moreover, we demonstrate that additional data sources related to water basins and population are valuable resources that the model can exploit to infer WWTP capacity. During the process, we also demonstrate the benefit of using negative instances to train our model and the impact of using an appropriate loss function such as Dice's loss

    The MONARCH high-resolution reanalysis of desert dust aerosol over Northern Africa, the Middle East and Europe (2007–2016)

    Get PDF
    One of the challenges in studying desert dust aerosol along with its numerous interactions and impacts is the paucity of direct in situ measurements, particularly in the areas most affected by dust storms. Satellites typically provide column-integrated aerosol measurements, but observationally constrained continuous 3D dust fields are needed to assess dust variability, climate effects and impacts upon a variety of socio-economic sectors. Here, we present a high-resolution regional reanalysis data set of desert dust aerosols that covers Northern Africa, the Middle East and Europe along with the Mediterranean Sea and parts of central Asia and the Atlantic and Indian oceans between 2007 and 2016. The horizontal resolution is 0.1◩ latitude × 0.1◩ longitude in a rotated grid, and the temporal resolution is 3 h. The reanalysis was produced using local ensemble transform Kalman filter (LETKF) data assimilation in the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (MONARCH) developed at the Barcelona Supercomputing Center (BSC). The assimilated data are coarse-mode dust optical depth retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue Level 2 products. The reanalysis data set consists of upper-air variables (dust mass concentrations and the extinction coefficient), surface variables (dust deposition and solar irradiance fields among them) and total column variables (e.g. dust optical depth and load). Some dust variables, such as concentrations and wet and dry deposition, are expressed for a binned size distribution that ranges from 0.2 to 20 ”m in particle diameter. Both analysis and first-guess (analysis-initialized simulation) fields are available for the variables that are diagnosed from the state vector. A set of ensemble statistics is archived for each output variable, namely the ensemble mean, standard deviation, maximum and median. The spatial and temporal distribution of the dust fields follows well-known dust cycle features controlled by seasonal changes in meteorology and vegetation cover. The analysis is statistically closer to the assimilated retrievals than the first guess, which proves the consistency of the data assimilation method. Independent evaluation using Aerosol Robotic Network (AERONET) dust-filtered optical depth retrievals indicates that the reanalysis data set is highly accurate (mean bias = −0.05, RMSE = 0.12 and r = 0.81 when compared to retrievals from the spectral de-convolution algorithm on a 3-hourly basis). Verification statistics are broadly homogeneous in space and time with regional differences that can be partly attributed to model limitations (e.g. poor representation of small-scale emission processes), the presence of aerosols other than dust in the observations used in the evaluation and differences in the number of observations among seasons. Such a reliable high-resolution historical record of atmospheric desert dust will allow a better quantification of dust impacts upon key sectors of society and economy, including health, solar energy production and transportation. The reanalysis data set (Di Tomaso et al., 2021) is distributed via Thematic Real-time Environmental Distributed Data Services (THREDDS) at BSC and is freely available at http://hdl.handle.net/21.12146/c6d4a608-5de3-47f6-a004-67cb1d498d98 (last access: 10 June 2022).This research has been supported by the DustClim project, which is part of ERA4CS, an ERA-NET programme co-funded by the European Union’s Horizon 2020 research and innovation programme (grant no. 690462); the European Research Council (FRAGMENT (grant no. 773051)); grant no. RYC-2015- 18690 funded by MCIN/AEI/10.13039/501100011033 and ESF Investing in your future; grant no. CGL2017-88911-R funded by MCIN/AEI/10.13039/501100011033 and ERDF A way of making Europe; the AXA Research Fund (AXA Chair on Sand and Dust Storms); the European Commission, Horizon 2020 Framework Programme (grant no. 792103 (SOLWARIS)); and ATMO-ACCESS (Access to Atmospheric Research Facilities) funded in the frame of the programme H2020-EU.1.4.1.2 (grant no. 101008004, 1 April 2021–31 March 2025). JerĂłnimo Escribano and Martina Klose have received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie SkƂodowska-Curie grant agreements H2020-MSCACOFUND-2016-754433 and H2020-MSCA-IF-2017-789630, respectively. Martina Klose received further support through the Helmholtz Association’s Initiative and Networking Fund (grant no. VH-NG-1533). This work has been partially funded by the contribution agreement between AEMET and BSC to carry out development and improvement activities of the products and services supplied by the World Meteorological Organization (WMO) Barcelona Dust Regional Center (i.e. the WMO Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS) Regional Center for Northern Africa, the Middle East and Europe).Peer ReviewedArticle signat per 24 autors/es: Enza Di Tomaso (1) , JerĂłnimo Escribano (1) , Sara Basart (1) , Paul Ginoux (2) , Francesca Macchia (1) , Francesca Barnaba (3) , Francesco Benincasa (1), Pierre-Antoine BretonniĂšre (1), Arnau Buñuel (1), Miguel Castrillo (1), Emilio Cuevas (4) , Paola Formenti (5) , MarĂ­a Gonçalves (1,6), Oriol Jorba (1), Martina Klose (1,7), Lucia Mona (8), Gilbert MontanĂ© Pinto (1) , Michail Mytilinaios (8), Vincenzo Obiso (1,a), Miriam Olid (1), Nick Schutgens (9) , Athanasios Votsis (10,11), Ernest Werner (12), and Carlos PĂ©rez GarcĂ­a-Pando (1,13) // (1) Barcelona Supercomputing Center (BSC), Barcelona, Spain; (2) NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA; (3) Consiglio Nazionale delle Ricerche–Istituto di Scienze dell’Atmosfera e del Clima (CNR–ISAC), Rome, Italy; (4) Izaña Atmospheric Research Center (IARC), Agencia Estatal de MeteorologĂ­a (AEMET), Santa Cruz de Tenerife, Spain; (5) UniversitĂ© Paris CitĂ© and Univ Paris-Est CrĂ©teil, CNRS, LISA, 75013 Paris, France; (6) Department of Project and Construction Engineering, Universitat PolitĂšcnica de Catalunya – BarcelonaTech (UPC), Terrassa, Spain; (7) Department Troposphere Research, Institute of Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany; (8) Consiglio Nazionale delle Ricerche–Istituto di Metodologie per l’Analisi Ambientale (CNR–IMAA), Tito Scalo (PZ), Italy; (9) Department of Earth Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands; (10) Section of Governance and Technology for Sustainability (BMS-CSTM), University of Twente, Enschede, the Netherlands; (11) Weather and Climate Change Impact Research, Finnish Meteorological Institute (FMI), Helsinki, Finland; (12) Agencia Estatal de MeteorologĂ­a (AEMET), Barcelona, Spain; (13) ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain anow at: NASA Goddard Institute for Space Studies (GISS), New York, New York, USAObjectius de Desenvolupament Sostenible::13 - AcciĂł per al Clima::13.3 - Millorar l’educaciĂł, la conscienciaciĂł i la capacitat humana i institucional en relaciĂł amb la mitigaciĂł del canvi climĂ tic, l’adaptaciĂł a aquest, la reducciĂł dels efectes i l’alerta primerencaObjectius de Desenvolupament Sostenible::13 - AcciĂł per al ClimaPostprint (published version

    Using EC-Earth for climate prediction research

    Get PDF
    Climate prediction at the subseasonal to interannual time range is now performed routinely and operationally by an increasing number of institutions. The feasibility of climate prediction largely depends on the existence of slow and predictable variations in the ocean surface temperature, sea ice, soil moisture and snow cover, and on our ability to model the atmosphere’s interactions with those variables. Climate prediction is typically performed with statistical-empirical or process-based models. The two methods are complementary. Although forecasting systems using global climate models (GCMs) have made substantial progress in the last few decades (Doblas-Reyes et al., 2013), systematic errors and misrepresentations of key processes still limit the value of dynamical prediction in certain areas of the globe. At the same time, model initialisation, ensemble generation, understanding the processes at the origin of predictability, forecasting extremes, bias adjustment and model evaluation are all challenging aspects of the climate prediction problem. Addressing them requires both a large base of researchers with expertise in physics, mathematics, statistics, high-performance computing and data analysis interested in climate prediction issues and a tool for them to work with. This article illustrates how one of these tools, the EC-Earth climate model (Box A), has been used to train scientists in climate prediction and to address scientific challenges in this field. The use of model components from ECMWF’s Integrated Forecasting System (IFS) in EC-Earth means that some of the results obtained with EC-Earth can feed back into ECMWF’s activities. EC-Earth has been run extensively on ECMWF’s high-performance computing facility (HPCF), among a range of HPCFs across Europe and North America. The availability of ECMWF’s HPCF to EC-Earth partners, including the use of the successful ECMWF Special Project programme, means that a substantial amount of EC-Earth’s collaborative work, both within the consortium and with ECMWF, takes place on this platform.Postprint (published version

    Effectiveness of an mHealth intervention combining a smartphone app and smart band on body composition in an overweight and obese population: Randomized controlled trial (EVIDENT 3 study)

    Get PDF
    Background: Mobile health (mHealth) is currently among the supporting elements that may contribute to an improvement in health markers by helping people adopt healthier lifestyles. mHealth interventions have been widely reported to achieve greater weight loss than other approaches, but their effect on body composition remains unclear. Objective: This study aimed to assess the short-term (3 months) effectiveness of a mobile app and a smart band for losing weight and changing body composition in sedentary Spanish adults who are overweight or obese. Methods: A randomized controlled, multicenter clinical trial was conducted involving the participation of 440 subjects from primary care centers, with 231 subjects in the intervention group (IG; counselling with smartphone app and smart band) and 209 in the control group (CG; counselling only). Both groups were counselled about healthy diet and physical activity. For the 3-month intervention period, the IG was trained to use a smartphone app that involved self-monitoring and tailored feedback, as well as a smart band that recorded daily physical activity (Mi Band 2, Xiaomi). Body composition was measured using the InBody 230 bioimpedance device (InBody Co., Ltd), and physical activity was measured using the International Physical Activity Questionnaire. Results: The mHealth intervention produced a greater loss of body weight (–1.97 kg, 95% CI –2.39 to –1.54) relative to standard counselling at 3 months (–1.13 kg, 95% CI –1.56 to –0.69). Comparing groups, the IG achieved a weight loss of 0.84 kg more than the CG at 3 months. The IG showed a decrease in body fat mass (BFM; –1.84 kg, 95% CI –2.48 to –1.20), percentage of body fat (PBF; –1.22%, 95% CI –1.82% to 0.62%), and BMI (–0.77 kg/m2, 95% CI –0.96 to 0.57). No significant changes were observed in any of these parameters in men; among women, there was a significant decrease in BMI in the IG compared with the CG. When subjects were grouped according to baseline BMI, the overweight group experienced a change in BFM of –1.18 kg (95% CI –2.30 to –0.06) and BMI of –0.47 kg/m2 (95% CI –0.80 to –0.13), whereas the obese group only experienced a change in BMI of –0.53 kg/m2 (95% CI –0.86 to –0.19). When the data were analyzed according to physical activity, the moderate-vigorous physical activity group showed significant changes in BFM of –1.03 kg (95% CI –1.74 to –0.33), PBF of –0.76% (95% CI –1.32% to –0.20%), and BMI of –0.5 kg/m2 (95% CI –0.83 to –0.19). Conclusions: The results from this multicenter, randomized controlled clinical trial study show that compared with standard counselling alone, adding a self-reported app and a smart band obtained beneficial results in terms of weight loss and a reduction in BFM and PBF in female subjects with a BMI less than 30 kg/m2 and a moderate-vigorous physical activity level. Nevertheless, further studies are needed to ensure that this profile benefits more than others from this intervention and to investigate modifications of this intervention to achieve a global effect

    MONARCH regional reanalysis of desert dust aerosols: an initial assessment

    Get PDF
    Aerosol reanalyses are a well-established tool for monitoring aerosol trends, for validation and calibration of weather chemical models, as well as for the enhancement of strategies for environmental monitoring and hazard mitigation. By providing a consistent and complete data set over a sufficiently long period, they address the shortcomings of aerosol observational records in terms of temporal and spatial coverage and aerosol speciation. These shortcomings are particularly severe for dust aerosols. A 10-year dust aerosol regional reanalysis has been recently produced on the Barcelona Supercomputing Center HPC facilities at the high spatial resolution of 0.1°. Here we present a brief description and an initial assessment of this data set. An innovative dust optical depth data set, derived from the MODIS Deep Blue products, has been ingested in the dust module of the MONARCH model by means of a LETKF with a four-dimensional extension. MONARCH ensemble has been generated by applying combined meteorology and emission perturbations. This has been achieved using for each ensemble member different meteorological fields as initial and boundary conditions, and different emission schemes, in addition to stochastic perturbations of emission parameters, which we show is beneficial for dust data assimilation. We prove the consistency of the assimilation procedure by analyzing the departures of the assimilated observations from the model simulations for a two-month period. Furthermore, we show a comparison with AERONET coarse optical depth retrievals during a period of 2012, which indicates that the reanalysis data set is highly accurate. While further analysis and validation of the whole data set are ongoing, here we provide a first evidence for the reanalysis to be a useful record of dust concentration and deposition extending the existing observational-based information intended for mineral dust monitoring.We acknowledge the DustClim project which is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Union’s Horizon 2020 research and innovation programme (Grant n. 690462). BSC co-authors also acknowledge support from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant n. 773051; FRAGMENT), the AXA Research Fund, the 60 Spanish Ministry of Science, Innovation and Universities (grant n. RYC-2015-18690 and CGL2017-88911-R), the European Union’s Horizon 2020 research and innovation programme (grant n. 792103; SOLWARIS). This work has been partially funded by the contribution agreement between AEMET and BSC to carry out development and improvement activities of the products and services supplied by the WMO Sand and Dust Storm Regional Centres. Jerónimo Escribano and Martina Klose have received funding from the European Union’s Horizon 2020 research and innovation programme, respectively, under the Marie SkƂodowska-Curie grant agreements H2020-MSCA-COFUND-2016- 65 754433 and H2020-MSCA-IF-2017-789630. Martina Klose further acknowledges support through the Helmholtz Association’s Initiative and Networking Fund (grant agreement n. VH-NG-1533). We acknowledge PRACE (eDUST, eFRAGMENT1, and eFRAGMENT2) and RES (AECT-2019-3-0001, AECT-2020-1-0007, AECT-2020-3-0013) for awarding access to MareNostrum at the BSC and for providing technical support.Peer ReviewedObjectius de Desenvolupament Sostenible::13 - Acció per al ClimaPostprint (author's final draft
    corecore