5 research outputs found

    Antibiotic resistance gene profile changes in cropland soil after manure application and rainfall

    Get PDF
    Land application of manure introduces gastrointestinal microbes into the environment, including bacteria carrying antibiotic resistance genes (ARGs). Measuring soil ARGs is important for active stewardship efforts to minimize gene flow from agricultural production systems; however, the variety of sampling protocols and target genes makes it difficult to compare ARG results between studies. We used polymerase chain reaction (PCR) methods to characterize and/or quantify 27 ARG targets in soils from 20 replicate, long-term no-till plots, before and after swine manure application and simulated rainfall and runoff. All samples were negative for the 10 b-lactamase genes assayed. For tetracycline resistance, only source manure and post-application soil samples were positive. The mean number of macrolide, sulfonamide, and integrase genes increased in post-application soils when compared with source manure, but at plot level only, 1/20, 5/20, and 11/20 plots post-application showed an increase in erm(B), sulI, and intI1, respectively. Results confirmed the potential for temporary blooms of ARGs after manure application, likely linked to soil moisture levels. Results highlight uneven distribution of ARG targets, even within the same soil type and at the farm plot level. This heterogeneity presents a challenge for separating effects of manure application from background ARG noise under field conditions and needs to be considered when designing studies to evaluate the impact of best management practices to reduce ARG or for surveillance. We propose expressing normalized quantitative PCR (qPCR) ARG values as the number of ARG targets per 100,000 16S ribosomal RNA genes for ease of interpretation and to align with incidence rate data

    Antibiotic resistance gene profile changes in cropland soil after manure application and rainfall

    Get PDF
    Land application of manure introduces gastrointestinal microbes into the environ- ment, including bacteria carrying antibiotic resistance genes (ARGs). Measuring soil ARGs is important for active stewardship efforts to minimize gene flow from agri- cultural production systems; however, the variety of sampling protocols and target genes makes it difficult to compare ARG results between studies. We used polymerase chain reaction (PCR) methods to characterize and/or quantify 27 ARG targets in soils from 20 replicate, long-term no-till plots, before and after swine manure application and simulated rainfall and runoff. All samples were negative for the 10 b-lactamase genes assayed. For tetracycline resistance, only source manure and post-application soil samples were positive. The mean number of macrolide, sulfonamide, and inte- grase genes increased in post-application soils when compared with source manure, but at plot level only, 1/20, 5/20, and 11/20 plots post-application showed an increase in erm(B), sulI, and intI1, respectively. Results confirmed the potential for tempo- rary blooms of ARGs after manure application, likely linked to soil moisture lev- els. Results highlight uneven distribution of ARG targets, even within the same soil type and at the farm plot level. This heterogeneity presents a challenge for separating effects of manure application from background ARG noise under field conditions and needs to be considered when designing studies to evaluate the impact of best manage- ment practices to reduce ARG or for surveillance. We propose expressing normalized quantitative PCR (qPCR) ARG values as the number of ARG targets per 100,000 16S ribosomal RNA genes for ease of interpretation and to align with incidence rate dat

    Condensed and Hydrolyzable Tannins for Reducing Methane and Nitrous Oxide Emissions in Dairy Manure—A Laboratory Incubation Study

    No full text
    The objectives of this study were to (1) examine the effects of plant condensed (CT) and hydrolyzable tannin (HT) extracts on CH4 and N2O emissions; (2) identify the reactions responsible for manure-derived GHG emissions, and (3) examine accompanying microbial community changes in fresh dairy manure. Five treatments were applied in triplicate to the freshly collected dairy manure, including 4% CT, 8% CT, 4% HT, 8% HT (V/V), and control (no tannin addition). Fresh dairy manure was placed into 710 mL glass incubation chambers. In vitro composted dairy manure samples were collected at 0, 24, 48, and 336 h after the start of incubation. Fluxes of N2O and CH4 were measured for 5-min/h for 14 d at a constant ambient incubation temperature of 39 °C. The addition of quebracho CT significantly decreased the CH4 flux rates compared to the tannin-free controls (215.9 mg/m2/h), with peaks of 75.6 and 89.6 mg/m2/h for 4 and 8% CT inclusion rates, respectively. Furthermore, CT significantly reduced cumulative CH4 emission by 68.2 and 57.3% at 4 and 8% CT addition, respectively. The HT treatments failed to affect CH4 reduction. However, both CT and HT reduced (p 2O emissions. The decrease in CH4 flux with CT was associated with a reduction in the abundance of Bacteroidetes and Proteobacteria

    Antibiotic resistance gene profile changes in cropland soil after manure application and rainfall

    No full text
    Land application of manure introduces gastrointestinal microbes into the environment, including bacteria carrying antibiotic resistance genes (ARGs). Measuring soil ARGs is important for active stewardship efforts to minimize gene flow from agricultural production systems; however, the variety of sampling protocols and target genes makes it difficult to compare ARG results between studies. We used polymerase chain reaction (PCR) methods to characterize and/or quantify 27 ARG targets in soils from 20 replicate, long-term no-till plots, before and after swine manure application and simulated rainfall and runoff. All samples were negative for the 10 b-lactamase genes assayed. For tetracycline resistance, only source manure and post-application soil samples were positive. The mean number of macrolide, sulfonamide, and integrase genes increased in post-application soils when compared with source manure, but at plot level only, 1/20, 5/20, and 11/20 plots post-application showed an increase in erm(B), sulI, and intI1, respectively. Results confirmed the potential for temporary blooms of ARGs after manure application, likely linked to soil moisture levels. Results highlight uneven distribution of ARG targets, even within the same soil type and at the farm plot level. This heterogeneity presents a challenge for separating effects of manure application from background ARG noise under field conditions and needs to be considered when designing studies to evaluate the impact of best management practices to reduce ARG or for surveillance. We propose expressing normalized quantitative PCR (qPCR) ARG values as the number of ARG targets per 100,000 16S ribosomal RNA genes for ease of interpretation and to align with incidence rate data
    corecore