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Abstract
Land application of manure introduces gastrointestinal microbes into the environ-

ment, including bacteria carrying antibiotic resistance genes (ARGs). Measuring soil

ARGs is important for active stewardship efforts to minimize gene flow from agri-

cultural production systems; however, the variety of sampling protocols and target

genes makes it difficult to compare ARG results between studies. We used polymerase

chain reaction (PCR) methods to characterize and/or quantify 27 ARG targets in soils

from 20 replicate, long-term no-till plots, before and after swine manure application

and simulated rainfall and runoff. All samples were negative for the 10 b-lactamase

genes assayed. For tetracycline resistance, only source manure and post-application

soil samples were positive. The mean number of macrolide, sulfonamide, and inte-

grase genes increased in post-application soils when compared with source manure,

but at plot level only, 1/20, 5/20, and 11/20 plots post-application showed an increase

in erm(B), sulI, and intI1, respectively. Results confirmed the potential for tempo-

rary blooms of ARGs after manure application, likely linked to soil moisture lev-

els. Results highlight uneven distribution of ARG targets, even within the same soil

type and at the farm plot level. This heterogeneity presents a challenge for separating

effects of manure application from background ARG noise under field conditions and

needs to be considered when designing studies to evaluate the impact of best manage-

ment practices to reduce ARG or for surveillance. We propose expressing normalized

quantitative PCR (qPCR) ARG values as the number of ARG targets per 100,000 16S

ribosomal RNA genes for ease of interpretation and to align with incidence rate data.

Abbreviations: ARG, antibiotic resistance gene; LOD, limit of detection;

PCR, polymerase chain reaction; qPCR, quantitative polymerase chain

reaction; rRNA, ribosomal RNA.
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1 INTRODUCTION

The urgency and complexity of the global health crisis

caused by antibiotic resistance is driving interest in under-

standing the prevalence, fate, and transport of agricultural

and environmental antibiotic resistance. Soil is a natural
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reservoir of antibiotic-resistant bacteria, and their genes

can be found in soils across the globe (Cytryn, 2013;

D’Costa, McGrann, Hughes, & Wright, 2006; Durso, Miller,

& Wienhold, 2012). Human and animal feces are also

a natural reservoir of antibiotic resistance genes (ARGs)

(Stanton, Humphrey, & Stoffregen, 2011), and ARGs are

enriched from individuals that receive antibiotics (Looft et al.,

2012).

The application of animal manures to soil is an ancient

practice (Bogaard, Heaton, Poulton, & Merbach, 2007), which

continues today in both conventional and organic farming sys-

tems. Manure provides valuable nutrients for crops, increases

soil organic matter and improves soil health (Doran & Zeiss,

2000; Edmeades, Thorrold, & Roberts, 2005; Garcia-Pausas,

Rovira, Rabissi, & Romanyà, 2017). It also introduces gas-

trointestinal microbes into the environment, raising con-

cerns related to infectious disease and antibiotic resistance

(Marti et al., 2013; McKinney, Dungan, Moore, & Leytem,

2018).

The details of manure-borne ARG persistence in soils after

land application remain unclear, with some studies report-

ing temporal declines reaching background levels over the

course of a growing season (Chen et al., 2017; Durso, Miller,

& Henry, 2018; Marti et al., 2013, 2014), whereas others

report increases in specific ARG targets (Scott, Tien, Drury,

Reynolds, & Topp, 2018). In one study, variable results were

seen for sulI (sulfonamide), erm(B) (erythromycin), and intI1
(Class 1 integron-integrase) genes immediately after land

application of manures, where both exponential decay and

increases were observed in the short-term during different

years (Marti et al., 2014).

Deciphering the impact of manured soils on measures of

antibiotic resistance in the environment is complicated by

large areas to be tested, generally limited replication in field

studies, and the known heterogeneity of soil systems (Kel-

ley, 1922; Pepper & Brusseau, 2019). To explore the repeata-

bility of field ARG measurements, we used a before-and-

after framework common in land application studies to exam-

ine 20 replicate field plots receiving manure and simulated

rainfall. We expected the ARG dynamics in all 20 plots

to be similar, and pre-application soil ARG measurements

to be lower than ARG measurements of recently manured

soils.

2 MATERIALS AND METHODS

2.1 Sample collection

Soil samples (0–10 cm) were collected from plots at the

University of Nebraska Rogers Memorial Farm (40◦50′42″

N, 96◦28′19″ W) (Gilley et al., 2017). Twenty no-till plots

were established, perpendicular to the slope, on fields

Core Ideas
• There is uneven distribution of ARGs even in repli-

cate plots of the same soil type and on the same

farm.

• Temporary blooms of ARGs after manure applica-

tion were likely linked to soil moisture levels.

• Heterogeneity of ARG distribution should be

considered when planning environmental surveil-

lance.

documented to have received no manure application since the

farm was bequeathed to the university in 1947. The fields had

previously been used for winter wheat (Triticum aestivum L.),

soybean [Glycine max (L.) Merr.], corn (Zea mays L.), and

grain sorghum [Sorghum bicolor (L.) Moench], with winter

wheat harvested from the study site the previous year. The

wheat residue was not chopped and provided 100% soil cov-

erage. The Aksarben clay loam (fine, smectic, mesic Typic

Arguidolls) was representative of soils found in southeastern

Nebraska (Supplemental Table S1). Replicate plots were

sampled at two time points, 1 wk apart (Supplemental Figure

S1). Due to the labor-intensive nature of the field collection

protocol involving simulated rainfall over the 20 plots (Gilley

et al., 2017), two plots were processed each week during a

10-wk test period, with new manure applied weekly (n = 10

source manures).

Swine manure was collected weekly from a commer-

cial deep pit swine operation in southeast Nebraska and

transported in 20-L plastic buckets. An initial subsample of

manure slurry was collected prior to the start of experiments

and characterized for chemical and physical properties

(Gilley et al., 2017). These values were used to calculate

the application rate, with an estimated target of 151 kg N

ha−1 yr−1, the rate needed to meet the annual N requirement

for corn. Functionally, the addition of manure adds not only

nutrients, but also antibiotic-resistant bacteria and ARGs to

the soil. The slurry was surface applied by hand at a rate of

3.90 × 104 kg ha−1, simulating a typical manure spreader.

The manure was left on the soil surface without incorporation

via tillage or other methods.

Twenty pre-application and 20 post-application samples

were each collected from a 10-cm3 area that was 20 cm

down-slope of the manure application zone, with samples

from the two collection times collected directly adjacent

to each other. Field collection utensils were wiped clean

between uses and sprayed with ethanol. Soil and manure

samples (n = 10 manure and 40 soil) were placed in cool-

ers and transported immediately on ice to the laboratory for

analyses.
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2.2 Microbiological analyses

Within 4 h of collection, the soil and manure samples were

homogenized by hand mixing and stored in a −80 ◦C freezer

on arrival to the laboratory. The DNA was isolated from the

40 soil and 10 manure samples using Qiagen DNeasy Power

Soil Kit (#12888-100) following manufacturer’s instruc-

tions, except cell lysis was done with an Omnibeadruptor12

(Omni International), at 2.40 m s−1 for 1 min. Standard

polymerase chain reaction (PCR) was used to assay 14 tetra-

cycline resistance genes, sulfonamide sul1, macrolide erm(B),

b-lactamase CTX-M-32, and integrase intI1 (Supplemental

Figure S1). All PCR and quantitative PCR (qPCR) details are

presented in Supplemental Table S2. The PCR assay reac-

tion mix consisted of 1 × JumpStart REDTaq ReadyMix

reaction mix (Sigma Chemical), 2.0 μM primers, PCR-grade

water, and DNA template. Thermocycling conditions are pre-

sented in Supplemental Table S3. Amplicons were visual-

ized on a 2% agarose gel (1 × TAE) stained with SYBR

Safe DNA gel stain (LifeTech) and imaged using the UVP

GelDoc-ItTs3 Imager (Analytik Jena US). Pre-application soil

results were confirmed with additional PCR testing, including

controls for PCR inhibition. Detection of the 16S ribosomal

RNA (rRNA) gene was used to confirm that PCR inhibitors

had been removed during soil DNA extraction from all

samples.

Individual qPCR assays were used to quantify sulfonamide,

erythromycin, b-lactamase, integrase, and 16S rRNA genes.

All samples were run in triplicate. Thermocycling conditions

are listed in Supplemental Table S4. Quality conditions con-

sisted of an efficiency between 90 and 110% and an R2 value

between .80 and 1.00. Melting curve analysis was performed

for all assays to confirm authenticity of the PCR product. Lim-

its of detection for the assays were determined by running, in

triplicate, a series of dilutions using the gBlock (IDT) pos-

itive control, choosing the lowest dilution that amplified all

samples with a standard deviation of Cq values (i.e., how

many cycles were required to detect a measurable signal) that

was <1.0. The limits of detection (LODs) were four, three,

four, and three copies per PCR reaction for sulI, erm(B), CTX-

M-32, and intI1, respectively. On a per-gram-soil basis, the

LODs would be 1200–1600 copies g−1 (0.25 g soil extracted,

100 μl purified DNA extract, 1 μl amplified in each reaction).

Samples were assayed for an additional nine clinically rele-

vant β-lactamases using qPCR: CMY-2, CTX-M-15, CTX-

M-14, OXA-48, IMP, VIM, DHA, KPC, and NDM, using

the ARM-D Kit (Streck) for β-lactamase following manufac-

turer’s instructions.

It is common to normalize ARG qPCR field measurements

using the 16S rRNA gene, and these values are commonly

displayed as the negative log of the normalized values. Here,

we expressed these values as the number of ARG targets per

F I G U R E 1 Percentage of 20 plots positive for individual

tetracycline (TET) resistance genes. N = 10 manure. N = 20

post-application soils. Manure-borne antibiotic resistance genes

(ARGs) account for many, but not all, of the ARGs enriched in soil

after land application of swine slurry

100,000 16S rRNA genes, to align with incidence rate data

commonly used to assess risk in public health settings.

3 RESULTS

Antibiotic resistance gene detection varied, depending on the

specific target measured, but all manure and soil samples

were negative for the 10 β-lactamase genes surveyed and posi-

tive for 16S rRNA genes. Changes in soil antibiotic resistance

gene profiles were observed for 17 out of 27 assayed genes

after manure application and multiple rainfall events, with the

remaining genes not detected in any samples.

3.1 Qualitative or presence

Fourteen tetracycline resistance (TETr) genes were assayed

from the soil pre-application (n = 20), manure (n = 10),

and soil post-application (n = 20) samples using standard

PCR. None of the assayed TETr genes were detected in pre-

application soils, despite their presence in PCR positive con-

trols. Out of the 14 TETr genes assayed, 12 were detected in

manure and post-application soils (Figure 1). All manure sam-

ples were positive for the same nine of the possible 14 TETr

genes. There was no change in the target ARG profile of the

applied manure over the course of the experiment. The most

frequently detected TETr genes in the post-application soil

were tet(L), tet(M), and tet(O), which were found in 56% of

post-application soil samples. Each of the 20 post-application

soils had between zero and nine TETr genes detected of the

14 that were assayed (Figure 1). Neither tet(E) nor tetA(P)

were detected in any of the post-application soils. The mean
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F I G U R E 2 Carriage of sulI, erm(B), and intI1 genes. Soil

antibiotic resistance gene (ARG) profile changed after manure

application and simulated rainfall

number of TETr genes detected in manure and post-

application soils were nine and six, respectively.

Standard PCR was also used to assay sulfonamide,

macrolide, β-lactamase, and integrase genes (Figure 2). All

samples were negative for β-lactamase (CTX-M-32) resis-

tance genes. All manure samples were positive for sulfon-

amide resistance genes, macrolide resistance genes, and inte-

grase. Of the post-application soil samples, 85% were positive

for sulfonamide resistance genes, macrolide resistance genes,

and integrase (17 of 20 post-application samples).

3.2 qPCR (quantitative measures of
antibiotic resistance)

The average number of copies of sulI, erm(B), CTX-M-32,

intI1, and 16S rRNA in pre-application soil, manure, and post-

application soil are presented in Table 1. Values were normal-

ized based on the total number of 16S rRNA genes in the sam-

ple and are displayed in Figure 3. There were nine additional

β-lactamase genes assayed using qPCR: CMY-2, CTX-M-15,

CTX-M-14, OXA-48, IMP, VIM, DHA, KPC, and NDM. All

soil and manure samples were negative for the nine additional

β-lactamase genes.

4 DISCUSSION

Methods that employ PCR are widely used in a research

capacity for detecting antibiotic resistance in environmental

samples (Marti et al., 2013: McKinney et al., 2018), offering

the possibility to obtain information on target genes in hours

as compared with culture-based methods that require days

of laboratory work. However, PCR-based detection of ARGs

from complex environmental samples also has limitations that

make it difficult to compare results between studies or develop

standardized environmental ARG monitoring efforts (Luby,

F I G U R E 3 Quantification of antibiotic resistance gene (ARG)

targets, normalized per 100,000 16S genes. Mean absolute values,

although valuable for risk assessment purposes, obscure ecologically

relevant information, such as variations in bacterial community, 16S

copy number, and plot-based differences in ARG persistence. Lowest

normalized copy number per 100,000 16S ribosomal RNA genes is zero

Ibekwe, Ziles, & Pruden, 2016). The first step to determine

the potential for causal links between land application of ani-

mal manures and antibiotic resistance-derived adverse human

or veterinary health outcomes (Williams-Nguyen et al., 2016)

is to accurately measure antibiotic resistance in soil samples.

4.1 Quantifying antibiotic resistance genes
for individual plots versus mean

The qPCR method was used to quantify sulI, erm(B), CTX-

M-32, intI1, and 16S rRNA genes (Gillings et al., 2015;

Marti et al., 2014; Pruden, Pei, Sorteboom, & Carlson,

2006) from 20 replicate field plots, at two time points, and

then normalized using 16S rRNA gene abundance. Look-

ing at the normalized individual plot values contributing

to the mean for these targets (Figure 3), it is evident that

there was a large range of values across plots. For example,

sul1 genes in post-application soil ranged from 0 to 12,400

copies. This highlights the heterogeneity associated with field

measurements of ARGs. Mean values, although useful as

a general summary tool, obscure the plot-level variability

observed in this study. When collecting soils for field stud-

ies of manured soils, it is recommended to pool subsamples

from multiple locations and homogenize thoroughly to mini-

mize impact of soil heterogeneity on ARG conclusions.

The mean absolute values of the sulI, erm(B), and intI1
ARGs per gram dry weight of soil in the post-application

samples was higher than the combined mean values in the

pre-application soil and applied manure (Table 1). This is

likely due to the moist conditions after the rainfall events,

in conjunction with an average Nebraskan July temperature

of 32 ◦C—ideal conditions for manure- or soil-associated
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T A B L E 1 Quantitative polymerase chain reaction (qPCR) gene summary for sulfonamide sul1, erythromycin erm(b), β-lactamase (ctx-m-32),

and an integrase gene (inti1). An average moisture level of 90% was used to calculate the dry matter for manure (https://extension2.missouri.edu/

eq215)

Gene Pre-application soil Manure Post-application soil
copies g−1 soil DM copies g−1 manure DM copies g−1 soil DM

sul1 2.12 × 103 1.91 × 106 4.37 × 107

erm(B) ND 2.29 × 107 9.57 × 108

CTX-M-32 ND ND ND

intI1 3.17 × 103 3.29 × 105 4.12 × 107

16S ribosomal RNA 1.28 × 109 5.19 × 108 7.06 × 109

Note. DM, dry mass; ND, not detected.

microbes to proliferate and metabolize in the soil. Marti

et al. (2014) hypothesized that the cooler and wetter spring

weather was responsible for observed bacterial blooms, com-

pared with warmer, drier conditions under which an imme-

diate exponential decrease in bacteria was observed. Based

on the current study and the results of Marti et al. (2014), it

appears that temperature was less important than moisture in

supporting proliferation of manure-borne bacteria after land

application.

4.2 Standard PCR screening for tetracycline
resistance genes

Tetracycline resistance genes (TETr) are frequently assayed

in agricultural soils and are generally considered common

(Cytryn, 2013; D’Costa et al., 2006; Durso et al., 2012). In the

current study, none of the assayed TETr genes were detected

in pre-application soil samples. This result was unexpected,

as previous studies have identified TETr genes in nonmanured

agricultural soils, organic farm soils, and prairie soils (Agga,

Arthur, Durso, Harhay, & Schmidt, 2015; Cadena et al., 2018;

Durso, Wedin, Gilley, Miller, & Marx, 2016). Unlike pre-

application samples, multiple TETr genes were detected in

both manure and post-application soil samples (Figure 1);

these data highlight the utility of TETr genes as a marker for

manure inputs at this site and provide evidence that applied

manure is the primary source of the TETr genes found in the

post-application soils in this study.

Of note, however, is that three TETr genes [tet(A), tet(D),

and tet(G)] detected in post-application soils were absent in

both pre-application soils and the source manure. We have two

possible explanations:

1. Results could be due to soil heterogeneity. Post-application

samples were collected directly adjacent to pre-application

soils, but the destructive nature of field collection means

the two samples were not identical.

2. It is possible that the genes were present in either the pre-

application soils or source manure, but at a level below

our detection limit of three gene copies per PCR reaction

(equivalent to 1.2 × 103 copies per gram of soil), and then

the genes were enriched after the rainfall events.

Antibiotic resistance genes are widely considered to have

originated in environmental bacteria (Perry, Waglechner, &

Wright, 2016), and environmental bacteria remain an impor-

tant reservoir for ARGs. (Gibson, Forsberg, & Dantas, 2015).

Antibiotic resistance genes, including TETr genes, are also

common in feces, including feces of cattle, swine, humans,

dogs, and fish (Brooks, Adeli, & McLaughlin, 2014; Durso

et al., 2012). Tetracycline resistance genes evolved long before

the discovery of antibiotics (Koike, Mackie, & Aminov, 2017;

Rahman, Sakamoto, Kitamura, Nonaka, & Suzuki, 2015).

However, the use of tetracycline, along with other selective

pressures, has resulted in an increased proportion of bacte-

ria harboring ARGs in clinical and environmental samples

(Tan et al., 2018). This includes TETr genes found in both

organic and conventional farming systems (Brooks et al.,

2014; Cadena et al., 2018; Marti et al., 2013, 2014). In this

study, using plots that had never received any manure sam-

ples, the pre-application soils were negative for the TETr

genes assayed. In the current set of experiments, the swine

manure harbored a distinct set of TETr genes compared with

the receiving agronomic soil.

For research and surveillance efforts, the specific ARG tar-

get measured has been shown to affect the conclusions of the

study (Cadena et al., 2018; Durso et al., 2016; Liu, Jia, He,

Zhang, & Ye, 2017; Walk et al., 2007). Even when associ-

ated with the same drug resistance category such as tetracy-

cline, individual ARG targets, and sometimes even specific

gene subtypes are not equivalent (Rahman et al., 2015). In

the current study, we observed a smaller number of agro-

nomic plots positive for all TETr genes measured, compared

with amounts originating from the source manure; however,

the decrease varied considerably depending on the individual

TETr gene assayed (range 0–90%) (Figure 1). Contributing to

this phenomenon is the fact that the types of genes detected

in a sample depend, to a large extent, on the types of bac-

teria present (Durso et al., 2012; Durso, Miller, Schmidt, &

https://extension2.missouri.edu/eq215
https://extension2.missouri.edu/eq215
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Callaway, 2017; Forsberg et al., 2014; Liu et al., 2017). This

is particularly well documented for TETr genes (Roberts &

Schwarz, 2016; https://faculty.washington.edu/marilynr/).

The practical implications of individual TETr genes being

nonrandomly distributed in the environment is that target

selection can influence the perceived efficacy of control mea-

sures, with different TETr genes allowing for separate conclu-

sions. For example, the short land application period for the

current work resulted in manure-borne tet(Q) and tet(S) being

nondetectable just days after manure application, but tet(L),

tet(M), and tet(O) remained detectable in 90% of the plots.

Thus, multiple TETr gene targets need to be used to account

for the differing persistence of individual ARGs. Furthermore,

the background ARG profile of individual field sites must be

considered (Durso et al., 2016).

Manure is an essential element of sustainable organic crop-

ping systems, and responsible manure management is key

to minimizing numerous adverse environmental and human

health impacts. The addition of ARGs to soil, via manure

application, results in an immediate increase in the number

and types of soil ARG, due to a simple additive effect (Durso

& Cook, 2014). There is also evidence that manure applica-

tion enriches soil-borne bacteria, including indigenous bac-

teria that carry ARGs (Udikovic-Kolic, Wichmann, Broder-

ick, & Handelsman, 2014), and that manure-borne bacteria

can persist (Scott et al., 2018) and replicate in the environ-

ment (Walk, Alm, Calhoun, Mladonicky, & Whittam, 2007).

Another important consideration in the study of ARG pres-

ence in manure-amended soils is high variability. Although

the results from the current study demonstrated averaged

potential increases in ARGs after land application of swine

manure and rainfall, there was variability observed among the

20 replicate plots. These observations are supported by the

work of Marti et al. (2014) and Udikovic-Kolic et al. (2014).

However, it would be presumptuous to draw any broad con-

clusions on heterogeneity of ARG presence within plots based

on these limited data. There were two data points that were

significant outliers (Figure 3), potentially due to uneven dis-

tribution of the manure. Variability was also observed in the

quantity of specific gene targets, supporting the idea that indi-

vidual ARG targets are not equivalent for measuring general

antibiotic resistance (Durso et al., 2016).

Data from this study highlight the challenge of differ-

entiating the true effect of manure application from ARG

background noise under field conditions when measuring

frequency of ARG occurrence and abundance, even when

there is a high degree of replication within the study. Our

results support recommendations to collect background or

baseline data, particularly when examining impacts of human

or animal activities on ARG, so that results can be inter-

preted in light of the amounts and kinds of targets already

present before the treatment or application began (Dungan,

McKinney, & Leytem, 2018; Durso & Cook, 2014; Rothrock

et al., 2016).
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