15,428 research outputs found

    Epilegomena to the study of semiclassical orthogonal polynomials

    Full text link
    In his monograph [Classical and quantum orthogonal polynomials in one variable, Cambridge University Press, 2005 (paperback edition 2009)], Ismail conjectured that certain structure relations involving the Askey-Wilson operator characterize proper subsets of the set of all Dq\mathcal{D}_q-classical orthogonal polynomials, here to be understood as the Askey-Wilson polynomials and their limit cases. In this paper we give two characterization theorems for Dq\mathcal{D}_q-semiclassical (and classical) orthogonal polynomials in consonance with the pioneering works by Maroni [Ann. Mat. Pura. Appl. (1987)] and Bonan, Lubinsky, and Nevai [SIAM J. Math. Anal. 18 (1987)] for the standard derivative, re-establishing in this context the perfect "symmetry" between the standard derivative and the Askey-Wilson operator. As an application, we present a sequence of Dq\mathcal{D}_q-semiclassical orthogonal polynomials of class two that disproves Ismail's conjectures. Further results are presented for Hahn's operator

    Finite Larmor radius effects on non-diffusive tracer transport in a zonal flow

    Full text link
    Finite Larmor radius (FLR) effects on non-diffusive transport in a prototypical zonal flow with drift waves are studied in the context of a simplified chaotic transport model. The model consists of a superposition of drift waves of the linearized Hasegawa-Mima equation and a zonal shear flow perpendicular to the density gradient. High frequency FLR effects are incorporated by gyroaveraging the ExB velocity. Transport in the direction of the density gradient is negligible and we therefore focus on transport parallel to the zonal flows. A prescribed asymmetry produces strongly asymmetric non- Gaussian PDFs of particle displacements, with L\'evy flights in one direction but not the other. For zero Larmor radius, a transition is observed in the scaling of the second moment of particle displacements. However, FLR effects seem to eliminate this transition. The PDFs of trapping and flight events show clear evidence of algebraic scaling with decay exponents depending on the value of the Larmor radii. The shape and spatio-temporal self-similar anomalous scaling of the PDFs of particle displacements are reproduced accurately with a neutral, asymmetric effective fractional diffusion model.Comment: 14 pages, 13 figures, submitted to Physics of Plasma

    Universal Probability Distribution Function for Bursty Transport in Plasma Turbulence

    Full text link
    Bursty transport phenomena associated with convective motion present universal statistical characteristics among different physical systems. In this letter, a stochastic univariate model and the associated probability distribution function for the description of bursty transport in plasma turbulence is presented. The proposed stochastic process recovers the universal distribution of density fluctuations observed in plasma edge of several magnetic confinement devices and the remarkable scaling between their skewness SS and kurtosis KK. Similar statistical characteristics of variabilities have been also observed in other physical systems that are characterized by convection such as the X-ray fluctuations emitted by the Cygnus X-1 accretion disc plasmas and the sea surface temperature fluctuations.Comment: 10 pages, 5 figure

    On classical orthogonal polynomials on bi-lattices

    Full text link
    In [J. Phys. A: Math. Theor. 45 (2012)], while looking for spin chains that admit perfect state transfer, Vinet and Zhedanov found an apparently new sequence of orthogonal polynomials, that they called para-Krawtchouk polynomials, defined on a bilinear lattice. In this note we present necessary and sufficient conditions for the regularity of solutions of the corresponding functional equation. Moreover, the functional Rodrigues formula and a closed formula for the recurrence coefficients are presented. As a consequence, we characterize all solutions of the functional equation, including as very particular cases the Meixner, Charlier, Krawtchouk, Hahn, and para-Krawtchouk polynomials.Comment: arXiv admin note: substantial text overlap with arXiv:2102.0003

    Goldstone-type fluctuations and their implications for the amorphous solid state

    Full text link
    In sufficiently high spatial dimensions, the formation of the amorphous (i.e. random) solid state of matter, e.g., upon sufficent crosslinking of a macromolecular fluid, involves particle localization and, concommitantly, the spontaneous breakdown of the (global, continuous) symmetry of translations. Correspondingly, the state supports Goldstone-type low energy, long wave-length fluctuations, the structure and implications of which are identified and explored from the perspective of an appropriate replica field theory. In terms of this replica perspective, the lost symmetry is that of relative translations of the replicas; common translations remain as intact symmetries, reflecting the statistical homogeneity of the amorphous solid state. What emerges is a picture of the Goldstone-type fluctuations of the amorphous solid state as shear deformations of an elastic medium, along with a derivation of the shear modulus and the elastic free energy of the state. The consequences of these fluctuations -- which dominate deep inside the amorphous solid state -- for the order parameter of the amorphous solid state are ascertained and interpreted in terms of their impact on the statistical distribution of localization lengths, a central diagnostic of the the state. The correlations of these order parameter fluctuations are also determined, and are shown to contain information concerning further diagnostics of the amorphous solid state, such as spatial correlations in the statistics of the localization characteristics. Special attention is paid to the properties of the amorphous solid state in two spatial dimensions, for which it is shown that Goldstone-type fluctuations destroy particle localization, the order parameter is driven to zero, and power-law order-parameter correlations hold.Comment: 20 pages, 3 figure

    Mass of perfect fluid black shells

    Get PDF
    The spherically symmetric singular perfect fluid shells are considered for the case of their radii being equal to the event horizon (the black shells). We study their observable masses, depending at least on the three parameters, viz., the square speed of sound in the shell, instantaneous radial velocity of the shell at a moment when it reaches the horizon, and integration constant related to surface mass density. We discuss the features of black shells depending on an equation of state.Comment: 1 figure, LaTeX; final version + FA

    Time reparametrization invariance in arbitrary range p-spin models: symmetric versus non-symmetric dynamics

    Full text link
    We explore the existence of time reparametrization symmetry in p-spin models. Using the Martin-Siggia-Rose generating functional, we analytically probe the long-time dynamics. We perform a renormalization group analysis where we systematically integrate over short timescale fluctuations. We find three families of stable fixed points and study the symmetry of those fixed points with respect to time reparametrizations. One of those families is composed entirely of symmetric fixed points, which are associated with the low temperature dynamics. The other two families are composed entirely of non-symmetric fixed points. One of these two non-symmetric families corresponds to the high temperature dynamics. Time reparametrization symmetry is a continuous symmetry that is spontaneously broken in the glass state and we argue that this gives rise to the presence of Goldstone modes. We expect the Goldstone modes to determine the properties of fluctuations in the glass state, in particular predicting the presence of dynamical heterogeneity.Comment: v2: Extensively modified to discuss both high temperature (non-symmetric) and low temperature (symmetric) renormalization group fixed points. Now 16 pages with 1 figure. v1: 13 page
    corecore