1,704 research outputs found

    The enigma of young age

    Get PDF

    Partner selection in indoor-to-outdoor cooperative networks: an experimental study

    Full text link
    In this paper, we develop a partner selection protocol for enhancing the network lifetime in cooperative wireless networks. The case-study is the cooperative relayed transmission from fixed indoor nodes to a common outdoor access point. A stochastic bivariate model for the spatial distribution of the fading parameters that govern the link performance, namely the Rician K-factor and the path-loss, is proposed and validated by means of real channel measurements. The partner selection protocol is based on the real-time estimation of a function of these fading parameters, i.e., the coding gain. To reduce the complexity of the link quality assessment, a Bayesian approach is proposed that uses the site-specific bivariate model as a-priori information for the coding gain estimation. This link quality estimator allows network lifetime gains almost as if all K-factor values were known. Furthermore, it suits IEEE 802.15.4 compliant networks as it efficiently exploits the information acquired from the receiver signal strength indicator. Extensive numerical results highlight the trade-off between complexity, robustness to model mismatches and network lifetime performance. We show for instance that infrequent updates of the site-specific model through K-factor estimation over a subset of links are sufficient to at least double the network lifetime with respect to existing algorithms based on path loss information only.Comment: This work has been submitted to IEEE Journal on Selected Areas in Communications in August 201

    On computing the degree of convexity of polyominoes

    Get PDF
    In this paper we present an algorithm which has as input a convex polyomino P and computes its degree of convexity, de\ufb01ned as the smallest integer k such that any two cells of P can be joined by a monotone path inside P with at most k changes of direction. The algorithm uses space O(m + n) to represent a polyomino P with n rows and m columns, and has time complexity O(min(m, rk)), where r is the number of corners of P. Moreover, the algorithm leads naturally to a decomposition of P into simpler polyominoes

    L-Convex Polyominoes are Recognizable in Real Time by 2D Cellular Automata

    Full text link
    A polyomino is said to be L-convex if any two of its cells are connected by a 4-connected inner path that changes direction at most once. The 2-dimensional language representing such polyominoes has been recently proved to be recognizable by tiling systems by S. Brocchi, A. Frosini, R. Pinzani and S. Rinaldi. In an attempt to compare recognition power of tiling systems and cellular automata, we have proved that this language can be recognized by 2-dimensional cellular automata working on the von Neumann neighborhood in real time. Although the construction uses a characterization of L-convex polyominoes that is similar to the one used for tiling systems, the real time constraint which has no equivalent in terms of tilings requires the use of techniques that are specific to cellular automata

    Cation composition effects on oxide conductivity in the Zr_2Y_2O_7-Y_3NbO_7 system

    Full text link
    Realistic, first-principles-based interatomic potentials have been used in molecular dynamics simulations to study the effect of cation composition on the ionic conductivity in the Zr2Y2O7-Y3NbO7 system and to link the dynamical properties to the degree of lattice disorder. Across the composition range, this system retains a disordered fluorite crystal structure and the vacancy concentration is constant. The observed trends of decreasing conductivity and increasing disorder with increasing Nb5+ content were reproduced in simulations with the cations randomly assigned to positions on the cation sublattice. The trends were traced to the influences of the cation charges and relative sizes and their effect on vacancy ordering by carrying out additional calculations in which, for example, the charges of the cations were equalised. The simulations did not, however, reproduce all the observed properties, particularly for Y3NbO7. Its conductivity was significantly overestimated and prominent diffuse scattering features observed in small area electron diffraction studies were not always reproduced. Consideration of these deficiencies led to a preliminary attempt to characterise the consequence of partially ordering the cations on their lattice, which significantly affects the propensity for vacancy ordering. The extent and consequences of cation ordering seem to be much less pronounced on the Zr2Y2O7 side of the composition range.Comment: 22 pages, 8 figures, submitted to Journal of Physics: Condensed Matte

    TOWARDS FULLY AUTOMATED DIGITAL ALIBIS WITH SOCIAL INTERACTION

    Get PDF
    Digital traces found on local hard drives as a result of online activities have become very valuable in reconstructing events in digital forensic investigations. This paper demonstrates that forged alibis can be created for online activities and social interactions. In particular, a novel, automated framework is presented that uses social interactions to create false digital alibis. The framework simulates user activity and supports communications via email as well as instant messaging using a chatbot. The framework is evaluated by extracting forensic artifacts and comparing them with the results obtained from a human user study

    Cooperative Regions For Coded Cooperation Over Time-Varying Fading Channels

    Get PDF
    The performance analysis of coded cooperation has been mainly focused on two extreme cases of channel variability, i.e. the block-fading (BF) and the fast-fading (FF) model. In more practical propagation environments the fading correlation across time depends on the level of user mobility. This paper analyzes the effects of time-selective fading on the performance of coded cooperation by providing an analytical framework for the error rate evaluation as a function of the mobility degree of the mobile station (MS) and of the quality of the inter-MS channel. The purpose is to evaluate the conditions on the propagation settings where the additional exploitation of spatial diversity (when time-diversity is available) provided by cooperative transmission is able to enhance substantially the performance of the non-cooperative transmission. We show that coded cooperation can outperform the non-cooperative (coded and bit-interleaved) transmission only up to a certain degree of mobility. The cooperative region is defined as the collection of mobility settings for which coded cooperation can be regarded as a competitive strategy compared to non-cooperative transmission. Contrary to what has been previously shown for BF channels, we demonstrate that the inter-MS channel quality plays a key role in the definition of the cooperative region
    corecore