8 research outputs found

    Reassessment of gadolinium odd isotopes neutron cross sections: scientific motivations and sensitivity-uncertainty analysis on LWR fuel assembly criticality calculations

    Get PDF
    Gadolinium odd isotopes cross sections are crucial in assessing the neutronic performance and safety features of a light water reactor (LWR) core. Accurate evaluations of the neutron capture behavior of gadolinium burnable poisons are necessary for a precise estimation of the economic gain due to the extension of fuel life, the residual reactivity penalty at the end of life, and the reactivity peak for partially spent fuel for the criticality safety analysis of Spent Fuel Pools. Nevertheless, present gadolinium odd isotopes neutron cross sections are somehow dated and poorly investigated in the high sensitivity thermal energy region and are available with an uncertainty which is too high in comparison to the present day typical industrial standards and needs. This article shows how the most recent gadolinium cross sections evaluations appear inadequate to provide accurate criticality calculations for a system with gadolinium fuel pins. In this article, a sensitivity and uncertainty analysis (S/U) has been performed to investigate the effect of gadolinium odd isotopes nuclear cross sections data on the multiplication factor of some LWR fuel assemblies. The results have shown the importance of gadolinium odd isotopes in the criticality evaluation, and they confirmed the need of a re-evaluation of the neutron capture cross sections by means of new experimental measurements to be carried out at the n_TOF facility at CERN

    Neutrons propagation in Lead: A feasibility study for experiments in the RSV TAPIRO fast research reactor

    No full text
    The increasing worldwide interest in Lead-cooled Fast Reactors (LFRs) substantiates the need to validate the analytical codes and methods used to support their design. For neutronic analyses, this is chiefly reflected in assessing the impact of nuclear data uncertainties on the integral and local parameters resulting from such analyses. The aim of refining nuclear data moves continuous efforts for more accurate measurements, be them differential or integral, for which adequate facilities are required. The availability at the ENEA's Casaccia research center of a fast source reactor – RSV TAPIRO – provides a unique opportunity to perform new integral experiments in support of fast reactors, including LFRs, owing to the well-characterized neutron spectrum of the thermal column. A series of experiments has been envisaged, dealing with the use of Lead in a reactor. The experiments concern the propagation of neutrons through blocks of materials representing relevant elements of a reactor core, and ranging from pure Lead to mixtures reproducing portions of the reflector and shield in LFRs. The paper is focused on the feasibility study of some of these experiments in which Lead and mixture blocks are inserted in the so-called thermal column of the RSV TAPIRO reactor and irradiated by the neutron flux emerging from the Copper reflector surrounding the reactor core

    The CERN n_TOF facility: a unique tool for nuclear data measurement

    No full text
    he study of the resonant structures in neutron-nucleus cross-sections, and therefore of the compound-nucleus reaction mechanism, requires spectroscopic measurements to determine with high accuracy the energy of the neutron interacting with the material under study. To this purpose, the neutron time-of-flight facility n_TOF has been operating since 2001 at CERN. Its characteristics, such as the high intensity instantaneous neutron flux, the wide energy range from thermal to few GeV, and the very good energy resolution, are perfectly suited to perform high-quality measurements of neutron-induced reaction cross sections. The precise and accurate knowledge of these cross sections plays a fundamental role in nuclear technologies, nuclear astrophysics and nuclear physics. Two different measuring stations are available at the n_TOF facility, called EAR1 and EAR2, with different characteristics of intensity of the neutron flux and energy resolution. These experimental areas, combined with advanced detection systems lead to a great flexibility in performing challenging measurement of high precision and accuracy, and allow the investigation isotopes with very low cross sections, or available only in small quantities, or with very high specific activity. The characteristics and performances of the two experimental areas of the n_TOF facility will be presented, together with the most important measurements performed to date and their physics case. In addition, the significant upcoming measurements will be introduced

    7Be(n,α) and 7Be(n,p) cross-section measurement for the cosmological lithium problem at the n_TOF facility at CERN

    No full text
    The Cosmological Lithium Problem refers to the large discrepancy between the abundance of primordial 7Li predicted by the standard theory of Big Bang Nucleosynthesis and the value inferred from the so-called “Spite plateau” in halo stars. A possible explanation for this longstanding puzzle in Nuclear Astrophysics is related to the incorrect estimation of the destruction rate of 7Be, which is responsible for the production of 95% of primordial Lithium. While charged-particle induced reactions have mostly been ruled out, data on the 7Be(n,α) and 7Be(n,p) reactions are scarce or completely missing, so that a large uncertainty still affects the abundance of 7Li predicted by the standard theory of Big Bang Nucleosynthesis. Both reactions have been measured at the n_TOF facility at CERN, providing for the first time data in a wide neutron energy range

    The 33S(n,α)30Si cross section measurement at n_TOF-EAR2 (CERN): from 0.01 eV to the resonance region

    No full text
    The 33S(n,α)30Si cross section measurement, using 10B(n,α) as reference, at the n_TOF Experimental Area 2 (EAR2) facility at CERN is presented. Data from 0.01 eV to 100 keV are provided and, for the first time, the cross section is measured in the range from 0.01 eV to 10 keV. These data may be used for a future evaluation of the cross section because present evaluations exhibit large discrepancies. The 33S(n,α)30Si reaction is of interest in medical physics because of its possible use as a cooperative target to boron in Neutron Capture Therapy (NCT)

    Experimental setup and procedure for the measurement of the 7Be(n,α)α reaction at n_TOF

    No full text

    The measurement programme at the neutron time-of-flight facility n_TOF at CERN

    No full text
    Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN’s neutron time-of-flight facility n_TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n_TOF will be presented
    corecore