1,178 research outputs found

    Reconstructing the Image Scanning Microscopy Dataset: an Inverse Problem

    Full text link
    Confocal laser-scanning microscopy (CLSM) is one of the most popular optical architectures for fluorescence imaging. In CLSM, a focused laser beam excites the fluorescence emission from a specific specimen position. Some actuators scan the probed region across the sample and a photodetector collects a single intensity value for each scan point, building a two-dimensional image pixel-by-pixel. Recently, new fast single-photon array detectors have allowed the recording of a full bi-dimensional image of the probed region for each scan point, transforming CLSM into image scanning microscopy (ISM). This latter offers significant improvements over traditional imaging but requires an optimal processing tool to extract a super-resolved image from the four-dimensional dataset. Here we describe the image formation process in ISM from a statistical point of view, and we use the Bayesian framework to formulate a multi-image deconvolution problem. Notably, the single-photon detector suffers exclusively from the photon shot noise, enabling the development of an effective likelihood model. We derive an iterative likelihood maximization algorithm and test it on experimental and simulated data. Furthermore, we demonstrate that the ISM dataset is redundant, enabling the possibility of obtaining reconstruction sampled at twice the scanning step. Our results prove that in ISM, under appropriate conditions, the Nyquist-Shannon sampling criterium is effectively relaxed. This finding can be exploited to speed up the acquisition process by a factor of four, further improving the versatility of ISM systems

    Efficacy and safety of two different tolvaptan doses in the treatment of hyponatremia in the Emergency Department

    Get PDF
    Hyponatremia (plasma sodium concentration or P[Na(+)] <136 mEq/L) is the most common electrolyte unbalance in clinical practice. Although it constitutes a negative prognostic factor, it frequently remains underdiagnosed and undertreated. Tolvaptan is an oral V2-receptor antagonist which produces aquaresis. Given its emerging role in the treatment of dilutional hyponatremia, we aimed to compare the efficacy and safety of two different doses of this drug in an Emergency Department (ED) setting. Consecutive patients with moderate-severe euvolemic or hypervolemic hyponatremia were sequentially assigned to the 15 mg Group and to the 7.5 mg Group, and were revaluated at 6, 12 and 24 h. Further evaluations and administrations were scheduled daily until P[Na(+)] correction was achieved or the maximum period of 72 h was exceeded. A 1-month follow-up was performed. Twenty-three patients were enrolled: 12 were included in the 15 mg Group, 11 in the 7.5 mg Group. Both doses significantly elevated the P[Na(+)] over 24 h, although the 15 mg Group showed faster corrections than the 7.5 mg Group (12 vs 6 mEq/L/24 h; P = 0.025). An optimal correction rate (within 4-8 mEq/L/24 h) was observed in 45.4 % of the 7.5 mg Group against 25.0 % (P n.s.). The standard dose led to dangerous overcorrections (>12 mEq/L/24 h) in 41.7 % of the patients, while the low dose did not cause any (P = 0.037). No osmotic demyelination syndrome was observed. A 7.5 mg tolvaptan dose can be considered both effective and safe in treating hyponatremia in the ED, while a 15 mg dose implicates too high risk of overcorrection

    Corylus avellana L. Aroma Blueprint: Potent Odorants Signatures in the Volatilome of High Quality Hazelnuts

    Get PDF
    The volatilome of hazelnuts (Corylus avellana L.) encrypts information about phenotype expression as a function of cultivar/origin, post-harvest practices, and their impact on primary metabolome, storage conditions and shelf-life, spoilage, and quality deterioration. Moreover, within the bulk of detectable volatiles, just a few of them play a key role in defining distinctive aroma (i.e., aroma blueprint) and conferring characteristic hedonic profile. In particular, in raw hazelnuts, key-odorants as defined by sensomics are: 2,3-diethyl-5-methylpyrazine (musty and nutty); 2-acetyl-1,4,5,6-tetrahydropyridine (caramel); 2-acetyl-1-pyrroline (popcorn-like); 2-acetyl-3,4,5,6-tetrahydropyridine (roasted, caramel); 3-(methylthio)-propanal (cooked potato); 3-(methylthio)propionaldehyde (musty, earthy); 3,7-dimethylocta-1,6-dien-3-ol/linalool (citrus, floral); 3-methyl-4-heptanone (fruity, nutty); and 5-methyl-(E)-2-hepten-4-one (nutty, fruity). Dry-roasting on hazelnut kernels triggers the formation of additional potent odorants, likely contributing to the pleasant aroma of roasted nuts. Whiting the newly formed aromas, 2,3-pentanedione (buttery); 2-propionyl-1-pyrroline (popcorn-like); 3-methylbutanal; (malty); 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel); dimethyl trisulfide (sulfurous, cabbage) are worthy to be mentioned. The review focuses on high-quality hazelnuts adopted as premium primary material by the confectionery industry. Information on primary and secondary/specialized metabolites distribution introduces more specialized sections focused on volatilome chemical dimensions and their correlation to cultivar/origin, post-harvest practices and storage, and spoilage phenomena. Sensory-driven studies, based on sensomic principles, provide insights on the aroma blueprint of raw and roasted hazelnuts while robust correlations between non-volatile precursors and key-aroma compounds pose solid foundations to the conceptualization of aroma potential

    Current experience in testing mitochondrial nutrients in disorders featuring oxidative stress and mitochondrial dysfunction: rational design of chemoprevention trials

    Get PDF
    An extensive number of pathologies are associated with mitochondrial dysfunction (MDF) and oxidative stress (OS). Thus, mitochondrial cofactors termed “mitochondrial nutrients” (MN), such as α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and l-carnitine (CARN) (or its derivatives) have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluated for the following endpoints: (a) treated diseases; (b) dosages, number of enrolled patients and duration of treatment; (c) trial success for each MN or MN combinations as reported by authors. The reports satisfying the above endpoints included total numbers of trials and frequencies of randomized, controlled studies, i.e., 81 trials testing ALA, 107 reports testing CoQ10, and 74 reports testing CARN, while only 7 reports were retrieved testing double MN associations, while no report was found testing a triple MN combination. A total of 28 reports tested MN associations with “classical” antioxidants, such as antioxidant nutrients or drugs. Combinations of MN showed better outcomes than individual MN, suggesting forthcoming clinical studies. The criteria in study design and monitoring MN-based clinical trials are discussed

    Interpretation of the optical transfer function: Significance for image scanning microscopy

    Get PDF
    The optical transfer function (OTF) is widely used to compare the performance of different optical systems. Conventionally, the OTF is normalized to unity for zero spatial frequency, but in some cases it is better to consider the unnormalized OTF, which gives the absolute value of the image signal. Examples are in confocal microscopy and image scanning microscopy, where the signal level increases with pinhole or array size. Comparison of the respective unnormalized OTFs gives useful insight into their relative performance. The significance of other properties of the general OTF is discussed

    Gated-sted microscopy with subnanosecond pulsed fiber laser for reducing photobleaching

    Get PDF
    The spatial resolution of a stimulated emission depletion (STED) microscope is theoretically unlimited and practically determined by the signal-to-noise ratio. Typically, an increase of the STED beam's power leads to an improvement of the effective resolution. However, this improvement may vanish because an increased STED beam's power is often accompanied by an increased photobleaching, which worsen the effective resolution by reducing the signal strength. A way to lower the photobleaching in pulsed STED (P-STED) implementations is to reduce the peak intensity lengthening the pulses duration (for a given average STED beam's power). This also leads to a reduction of the fluorophores quenching, thus a reduction of the effective resolution, but the time-gated detection was proved to be successful in recovering these reductions. Here we demonstrated that a subnanosecond fiber laser beam (pulse width ∼600 ps) reduces the photobleaching with respect to a traditional stretched hundreds picosecond (∼200 ps) beam provided by a Ti:Sapphire laser, without any effective spatial resolution lost

    Molecular characterization of diaporthe species associated with hazelnut defects

    Get PDF
    Fungi of the genus Diaporthe have been reported as the main causative agent of hazelnut defects in the Caucasus area. This study aimed to define which fungal species are present in defective hazelnuts grown in Turkey and confirm the role of Diaporthe spp. Seven hazelnut orchards were selected, with each one located in a different Turkish Province (Düzce, Giresun, Ordu, Samsun, Sakarya, Trabzon, and Zonguldak), and hazelnuts were collected at early and full ripening. Fungal isolation and identification were performed at the genus level based on morphological characteristics. Several genera were isolated, with Diaporthe spp. being among the prevalent. This was the only genus with increasing incidence from early to full ripening, and incidence at full ripening was positively correlated both with internal (?=0.86) and visible defects (?=0.81), which confirmed its role as the key causative agent of hazelnut defects. The correlation of defect occurrence with rainfall, reported in previous study, was not confirmed, possibly due to the low defect incidence. A total of 86 Diaporthe monosporic strains isolated from Turkish hazelnut samples, together with 33 strains collected in the Caucasus region and 6 from Italy, were analyzed with a multi-locus phylogeny based on three genomic loci (ITS, EF1-?, and tub). The results showed that Diaporthe strains can be grouped into 7 distinct clades, with a majority of Turkish strains (95%) being placed into a single clade related with D. eres. These samples were organized into several sub-clades, which indicates the existence of genetically diverse sub-populations.This research was partially funded by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of the UIDB/04469/2020 unit and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020-Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio

    Placental and Umbilical Cord Anomalies Diagnosed by Two- and Three-Dimensional Ultrasound

    Get PDF
    The aim of this review is to present a wide spectrum of placental and umbilical cord pathologies affecting the pregnancy. Placental and umbilical cord anomalies are highly associated with high-risk pregnancies and may jeopardize fetal well-being in utero as well as causing a predisposition towards poor perinatal outcome with increased fetal and neonatal mortality and morbidity. The permanent, computerized perinatology databases of different international centers have been searched and investigated to fulfil the aim of this manuscript. An extended gallery of prenatal imaging with autopsy correlation in specific cases will help to provide readers with a useful iconographic tool and will assist with the understanding and definition of this critical obstetrical and perinatological issue
    corecore