147 research outputs found

    Non-Contact Detection of Breathing Using a Microwave Sensor

    Get PDF
    In this paper the use of a continuous-wave microwave sensor as a non-contact tool for quantitative measurement of respiratory tidal volume has been evaluated by experimentation in seventeen healthy volunteers. The sensor working principle is reported and several causes that can affect its response are analyzed. A suitable data processing has been devised able to reject the majority of breath measurements taken under non suitable conditions. Furthermore, a relationship between microwave sensor measurements and volume inspired and expired at quiet breathing (tidal volume) has been found

    What is Special K\"ahler Geometry ?

    Full text link
    The scalars in vector multiplets of N=2 supersymmetric theories in 4 dimensions exhibit `special Kaehler geometry', related to duality symmetries, due to their coupling to the vectors. In the literature there is some confusion on the definition of special geometry. We show equivalences of some definitions and give examples which show that earlier definitions are not equivalent, and are not sufficient to restrict the Kaehler metric to one that occurs in N=2 supersymmetry. We treat the rigid as well as the local supersymmetry case. The connection is made to moduli spaces of Riemann surfaces and Calabi-Yau 3-folds. The conditions for the existence of a prepotential translate to a condition on the choice of canonical basis of cycles.Comment: 46 pages, latex, no figures; 2 minor correction

    Spectral Function of 2D Fermi Liquids

    Full text link
    We show that the spectral function for single-particle excitations in a two-dimensional Fermi liquid has Lorentzian shape in the low energy limit. Landau quasi-particles have a uniquely defined spectral weight and a decay rate which is much smaller than the quasi-particle energy. By contrast, perturbation theory and the T-matrix approximation yield spurious deviations from Fermi liquid behavior, which are particularly pronounced for a linearized dispersion relation.Comment: 6 pages, LaTeX2e, 5 EPS figure

    The rigid limit in Special Kahler geometry; From K3-fibrations to Special Riemann surfaces: a detailed case study

    Get PDF
    The limiting procedure of special Kahler manifolds to their rigid limit is studied for moduli spaces of Calabi-Yau manifolds in the neighbourhood of certain singularities. In two examples we consider all the periods in and around the rigid limit, identifying the nontrivial ones in the limit as periods of a meromorphic form on the relevant Riemann surfaces. We show how the Kahler potential of the special Kahler manifold reduces to that of a rigid special Kahler manifold. We extensively make use of the structure of these Calabi-Yau manifolds as K3 fibrations, which is useful to obtain the periods even before the K3 degenerates to an ALE manifold in the limit. We study various methods to calculate the periods and their properties. The development of these methods is an important step to obtain exact results from supergravity on Calabi-Yau manifolds.Comment: 79 pages, 8 figures. LaTeX; typos corrected, version to appear in Classical and Quantum Gravit

    Spin and Charge Structure Factor of the 2-d Hubbard Model

    Full text link
    The spin and charge structure factors are calculated for the Hubbard model on the square lattice near half-filling using a spin-rotation invariant six-slave boson representation. The charge structure factor shows a broad maximum at the zone corner and is found to decrease monotonically with increasing interaction strength and electron density and increasing temperature. The spin structure factor develops with increasing interaction two incommensurate peaks at the zone boundary and along the zone diagonal. Comparison with results of Quantum Monte Carlo and variational calculations is carried out and the agreement is found to be good. The limitations of an RPA-type approach are pointed out.Comment: 18 pages, revtex, 13 postscript figures, submitted to Phys. Rev.

    Brain-derived proteins in the CSF, do they correlate with brain pathology in CJD?

    Get PDF
    BACKGROUND: Brain derived proteins such as 14-3-3, neuron-specific enolase (NSE), S 100b, tau, phosphorylated tau and Aβ(1–42 )were found to be altered in the cerebrospinal fluid (CSF) in Creutzfeldt-Jakob disease (CJD) patients. The pathogenic mechanisms leading to these abnormalities are not known, but a relation to rapid neuronal damage is assumed. No systematic analysis on brain-derived proteins in the CSF and neuropathological lesion profiles has been performed. METHODS: CSF protein levels of brain-derived proteins and the degree of spongiform changes, neuronal loss and gliosis in various brain areas were analyzed in 57 CJD patients. RESULTS: We observed three different patterns of CSF alteration associated with the degree of cortical and subcortical changes. NSE levels increased with lesion severity of subcortical areas. Tau and 14-3-3 levels increased with minor pathological changes, a negative correlation was observed with severity of cortical lesions. Levels of the physiological form of the prion protein (PrP(c)) and Aβ(1–42 )levels correlated negatively with cortical pathology, most clearly with temporal and occipital lesions. CONCLUSION: Our results indicate that the alteration of levels of brain-derived proteins in the CSF does not only reflect the degree of neuronal damage, but it is also modified by the localization on the brain pathology. Brain specific lesion patterns have to be considered when analyzing CSF neuronal proteins
    corecore