2,110 research outputs found

    Thermodynamics of the one-dimensional SU(4) symmetric spin-orbital model

    Full text link
    The ground state properties and the thermodynamics of the one-dimensional SU(4) symmetric spin system with orbital degeneracy are investigated using the quantum Monte Carlo loop algorithm. The spin-spin correlation functions exhibit a 4-site periodicity, and their low temperature behavior is controlled by two correlation lengths that diverge like the inverse temperature, while the entropy is linear in temperature and its slope is consistent with three gapless modes of velocity π/2\pi/2. The physical implications of these results are discussed.Comment: 4 pages, 4 figures, RevTe

    RR LYRAE VARIABLE STARS: PULSATIONAL CONSTRAINTS RELEVANT TO THE OOSTERHOFF CONTROVERSY

    Get PDF
    A solution to the old Oosterhoff controversy is proposed on the basis of a new theoretical pulsational scenario concerning RR Lyrae cluster variables (Bono and coworkers). We show that the observed constancy of the lowest pulsation period in both Oosterhoff type I (OoI) and Oosterhoff type II (OoII) prototypes (M3, M15) can be easily reproduced only by assuming the canonical evolutionary horizontal-branch luminosity levels of these Galactic globular clusters and therefore by rejecting the Sandage period shift effect (SPSE).Comment: postscript file of 7 pages and 2 figures; one non postcript figure is available upon request; for any problem please write to [email protected]

    X-Ray Resonant Scattering as a Direct Probe of Orbital Ordering in Transition-Metal Oxides

    Full text link
    X-ray resonant scattering at the K-edge of transition metal oxides is shown to measure the orbital order parameter, supposed to accompany magnetic ordering in some cases. Virtual transitions to the 3d-orbitals are quadrupolar in general. In cases with no inversion symmetry, such as V2_2O3_3, treated in detail here, a dipole component enhances the resonance. Hence, we argue that the detailed structure of orbital order in V2_2O3_3 is experimentally accessible.Comment: LaTex using RevTex, 4 pages and two included postscript figure

    Multifractality: generic property of eigenstates of 2D disordered metals.

    Full text link
    The distribution function of local amplitudes of eigenstates of a two-dimensional disordered metal is calculated. Although the distribution of comparatively small amplitudes is governed by laws similar to those known from the random matrix theory, its decay at larger amplitudes is non-universal and much slower. This leads to the multifractal behavior of inverse participation numbers at any disorder. From the formal point of view, the multifractality originates from non-trivial saddle-point solutions of supersymmetric σ\sigma-model used in calculations.Comment: 4 two-column pages, no figures, submitted to PRL

    The role of the central limit theorem in the heterogeneous ensemble of Brownian particles approach

    Get PDF
    The central limit theorem (CLT) and its generalization to stable distributions have been widely described in literature. However, many variations of the theorem have been defined and often their applicability in practical situations is not straightforward. In particular, the applicability of the CLT is essential for a derivation of heterogeneous ensemble of Brownian particles (HEBP). Here, we analyze the role of the CLT within the HEBP approach in more detail and derive the conditions under which the existing theorems are valid

    Low-energy sector of the S=1/2 Kagome antiferromagnet

    Full text link
    Starting from a modified version of the the S=1/2 Kagome antiferromagnet to emphasize the role of elementary triangles, an effective Hamiltonian involving spin and chirality variables is derived. A mean-field decoupling that retains the quantum nature of these variables is shown to yield a Hamiltonian that can be solved exactly, leading to the following predictions: i) The number of low lying singlet states increase with the number of sites N like 1.15 to the power N; ii) A singlet-triplet gap remains in the thermodynamic limit; iii) Spinons form boundstates with a small binding energy. By comparing these properties with those of the regular Kagome lattice as revealed by numerical experiments, we argue that this description captures the essential low energy physics of that model.Comment: 4 pages including 3 figure

    Epoxy/ graphene nanocomposites – processing and properties: a review

    Get PDF
    Graphene has recently attracted significant academic and industrial interest because of its excellent performance in mechanical, electrical and thermal applications. Graphene can significantly improve physical properties of epoxy at extremely small loading when incorporated appropriately. Herein, the structure, preparation and properties of epoxy/graphene nanocomposites are reviewed in general, along with detailed examples drawn from the key scientific literature. The modification of graphene and the utilization of these materials in the fabrication of nanocomposites with different processing methods have been explored. This review has been focused on the processing methods and mechanical, electrical, thermal, and fire retardant properties of the nanocomposites. The synergic effects of graphene and other fillers in epoxy matrix have been summarised as well

    Action for IIB Supergravity in 10 dimensions

    Get PDF
    We review the construction of a manifestly covariant, supersymmetric and SL(2R) invariant action for IIB supergravity in D=10.Comment: 9 pages, LaTeX, Talk given at "Quantum Aspects of Gauge Theories, Supersymmetry and Unification", Greece, September 199

    Causally consistent reversible choreographies: a monitors-as-memories approach

    Get PDF
    Under a reversible semantics, computation steps can be undone. This paper addresses the integration of reversible semantics into a process model of multiparty protocols (choreographies). Building upon the monitors-as-memories approach that we developed in prior work for reversible binary protocols, we present a reversible process framework for multiparty communication, which improves on prior models by seamlessly integrating asynchrony, decoupled rollbacks, and process passing. As main technical result, we prove that our multiparty, reversible semantics is causally-consistent
    corecore