43 research outputs found

    Pre-pubertal Presentation of Peritoneal Inclusion Cyst Associated with Congenital Lower Extremity Venous Valve Agenesis

    Get PDF
    Low intraabdominal pressures are recommended for laparoscopic procedures in patients with lower extremity venous valve agenesis

    Biomechanical comparison of fatigue and load-bearing -performance of elastic stable intramedullary nailing

    Get PDF
    Purpose: Elastic stable intramedullary nailing (ESIN) is a very common method for the treatment of pediatric long bone fractures. Because of the fact that ESIN nails offer the chance of micromotion during the healing process, this method is beneficial in comparison to rigid bone fixation and stimulates the formation of a callus [1]. The time between the incident of the fracture and complete generation of the stabilizing callus seems to be a critical phase for the implants’ load-bearing. Torsional and axial stability has to be ensured by the ESIN implant during this phase. Methods: Because of the studies aim of monitoring the period until the formation of a callus, ovine cadaver -tibiae (3–4 months old) were implanted regarding clinical standards after osteotomy at the mid diaphyseal region. Four different combinations of locking systems and ESIN implants were observed during this study. Synthes TEN -Titanium with endcaps (n = 7), Hofer Medical HSNesin Titanium unlocked (n = 8), Hofer Medical STEN Steel with eye and 3-mm screw (n = 8), and Hofer Medical HSNesin Titanium with plug and 3mm screw (n = 8) were used. All nails were 3 mm in diameter. Cyclic mechanical loading was applied using a commercial uniaxial testing device (1710DLL-5KN, Dynamess, Germany), and a pneumatic torsion testing module which was constructed by one of the authors. This device is able to apply axial load and torque to the specimen simultaneously. Results: Juvenile ovine bones were used in this study to generate similar conditions as in pediatric long bones. All samples failed by a closure of the initial osteotomy gap of 10 mm. The results of biomechanical tests showed significantly higher load bearing capability with each interlocking system than with the unlocked ESIN. (1000 N max. compared with 200 N). The unlocked system and the endcap ESIN failed very abrupt, whereas the 3-mm plug and the steel system failed slowly. Above all, the 3-mm plug with steel ESIN experienced gap closure without any damage to plugs or screws, which led to a distal penetration of the diaphysis by the nails. Conclusions: Interlocking systems seem to be beneficial for stability of ESIN nailing under cyclic and simultaneous axial and torsional loading. The strongest combinations in this study were Hofer steel nails and Hofer plugs with 3-mm locking screws. Significance: Different combinations of ESIN nails and interlocking systems show diverse load bearing behaviors. Desirable characteristics of nonabrupt failure during the nails loading and maximal strength of interlocking systems could be established. REFERENCE [1] Bishop, N.E., van Rhijn, M., Tami, I., Corveleijn, R., Schneider, E., Ito, K. Shear does not necessarily inhibit bone healing. Clinical Orthopaedics and Related Research. 443

    A multinational survey on the infrastructural quality of paediatric intensive care units

    Get PDF
    Background: The aim of the present study was to assess whether paediatric intensive care units (PICUs) in three central European countries comply with guidelines concerning infrastructure provided by the European Society of Intensive Care Medicine (ESICM). Between July 2016 and May 2017, a survey was conducted based on the ESICM guidelines. The questionnaire was structured into four categories: structural quality, diagnostic/therapeutic equipment, personnel and organization. All PICUs treating paediatric patients in the D-A-CH region [Germany (D), Austria (A) and Switzerland (CH)] were researched through the national societies. A total of 126 PICUs were contacted (D: 106;A: 12;and CH: 8).Results: Eighty-five of 126 PICUs responded (D: 67%;A: 61%;and CH: 100%). A median of 500 patients was treated annually (D: 500;A: 350;and CH: 600) with a median of 12 beds (D: 12;A: 8;and CH: 12). Recommendations regarding infrastructure were met as follows: structural quality 62% in D, 71% in A and 75% in CH;diagnostic/therapeutic equipment: 87% in D, 91% in A and 89% in CH;personnel: 65% in D, 87% in A and 85% in CH;and organization: 75% in D, 73% in A and 88% in CH.Conclusion: sThis survey reveals deficits concerning structural quality in all countries. Furthermore, shortcomings regarding personnel were found in Germany and for organization in Germany and Austria. These issues need to be addressed urgently to further improve treatment quality and patient safety in the future

    Spectral Function of 2D Fermi Liquids

    Full text link
    We show that the spectral function for single-particle excitations in a two-dimensional Fermi liquid has Lorentzian shape in the low energy limit. Landau quasi-particles have a uniquely defined spectral weight and a decay rate which is much smaller than the quasi-particle energy. By contrast, perturbation theory and the T-matrix approximation yield spurious deviations from Fermi liquid behavior, which are particularly pronounced for a linearized dispersion relation.Comment: 6 pages, LaTeX2e, 5 EPS figure

    Instantons and Killing spinors

    Get PDF
    We investigate instantons on manifolds with Killing spinors and their cones. Examples of manifolds with Killing spinors include nearly Kaehler 6-manifolds, nearly parallel G_2-manifolds in dimension 7, Sasaki-Einstein manifolds, and 3-Sasakian manifolds. We construct a connection on the tangent bundle over these manifolds which solves the instanton equation, and also show that the instanton equation implies the Yang-Mills equation, despite the presence of torsion. We then construct instantons on the cones over these manifolds, and lift them to solutions of heterotic supergravity. Amongst our solutions are new instantons on even-dimensional Euclidean spaces, as well as the well-known BPST, quaternionic and octonionic instantons.Comment: 40 pages, 2 figures v2: author email addresses and affiliations adde

    Eukaryotic translation initiation factor 4AI: a potential novel target in neuroblastoma

    Get PDF
    Neuroblastoma (NB) is the most common extracranial pediatric solid tumor. Children suffering from high-risk and/or metastatic NB often show no response to therapy, and new therapeutic approaches are urgently needed. Malignant tumor development has been shown to be driven by the dysregulation of eukaryotic initiation factors (eIFs) at the translation initiation. Especially the activity of the heterotrimeric eIF4F complex is often altered in malignant cells, since it is the direct connection to key oncogenic signaling pathways such as the PI3K/AKT/mTOR-pathway. A large body of literature exists that demonstrates targeting the translational machinery as a promising anti-neoplastic approach. The objective of this study was to determine whether eIF4F complex members are aberrantly expressed in NB and whether targeting parts of the complex may be a therapeutic strategy against NB. We show that eIF4AI is overexpressed in NB patient tissue using immunohistochemistry, immunoblotting, and RT-qPCR. NB cell lines exhibit decreased viability, increased apoptosis rates as well as changes in cell cycle distribution when treated with the synthetic rocaglate CR-1-31-B, which clamps eIF4A and eIF4F onto mRNA, resulting in a translational block. Additionally, this study reveals that CR-1-31-B is effective against NB cell lines at low nanomolar doses (≀20 nM), which have been shown to not affect non-malignant cells in previous studies. Thus, our study provides information of the expression status on eIF4AI in NB and offers initial promising insight into targeting translation initiation as an anti-tumorigenic approach for NB.R35 GM118173 - NIGMS NIH HHS; COMET CBmed - Österreichische Forschungsförderungsgesellschaft; 1 - CSRD VAPublished versio

    Genetic Control of Obesity and Gut Microbiota Composition in Response to High-Fat, High-Sucrose Diet in Mice

    Get PDF
    Obesity is a highly heritable disease driven by complex interactions between genetic and environmental factors. Human genome-wide association studies (GWAS) have identified a number of loci contributing to obesity; however, a major limitation of these studies is the inability to assess environmental interactions common to obesity. Using a systems genetics approach, we measured obesity traits, global gene expression, and gut microbiota composition in response to a high-fat/high-sucrose (HF/HS) diet of more than 100 inbred strains of mice. Here we show that HF/HS feeding promotes robust, strain-specific changes in obesity that is not accounted for by food intake and provide evidence for a genetically determined set-point for obesity. GWAS analysis identified 11 genome-wide significant loci associated with obesity traits, several of which overlap with loci identified in human studies. We also show strong relationships between genotype and gut microbiota plasticity during HF/HS feeding and identify gut microbial phylotypes associated with obesity
    corecore