7 research outputs found

    Acid stress response in Escherichia coli: mechanism of regulation of gadA transcription by RcsB and GadE

    Get PDF
    Escherichia coli can survive extreme acid stress for several hours. The most efficient acid resistance system is based on glutamate decarboxylation by the GadA and GadB decarboxylases and the import of glutamate via the GadC membrane protein. The expression of the corresponding genes is controlled by GadE, the central activator of glutamate-dependent acid resistance (GDAR). We have previously shown by genetic approaches that as well as GadE, the response regulator of the Rcs system, RcsB is absolutely required for control of gadA/BC transcription. In the presence of GadE, basal activity of RcsB stimulates the expression of gadA/BC, whereas activation of RcsB leads to general repression of the gad genes. We report here the results of various in vitro assays that show RcsB to regulate by direct binding to the gadA promoter region. Furthermore, activation of gadA transcription requires a GAD box and binding of an RcsB/GadE heterodimer. In addition, we have identified an RcsB box, which lies just upstream of the −10 element of gadA promoter and is involved in repression of this operon

    RcsF Is an Outer Membrane Lipoprotein Involved in the RcsCDB Phosphorelay Signaling Pathway in Escherichia coli

    No full text
    The RcsCDB signal transduction system is an atypical His-Asp phosphorelay conserved in γ-proteobacteria. Besides the three proteins directly involved in the phosphorelay, two proteins modulate the activity of the system. One is RcsA, which can stimulate the activity of the response regulator RcsB independently of the phosphorelay to regulate a subset of RcsB targets. The other is RcsF, a putative outer membrane lipoprotein mediating the signaling to the sensor RcsC. How RcsF transduces the signal to RcsC is unknown. Although the molecular and physiological signals remain to be identified, the common feature among the reported Rcs-activating conditions is perturbation of the envelope. As an initial step to explore the RcsF-RcsC functional relationship, we demonstrate that RcsF is an outer membrane lipoprotein oriented towards the periplasm. We also report that a null mutation in surA, a gene required for correct folding of periplasmic proteins, activates the Rcs pathway through RcsF. In contrast, activation of this pathway by overproduction of the membrane chaperone-like protein DjlA does not require RcsF. Conversely, activation of the pathway by RcsF overproduction does not require DjlA either, indicating the existence of two independent signaling pathways toward RcsC

    Osmotic Regulation of the Escherichia coli bdm (Biofilm-Dependent Modulation) Gene by the RcsCDB His-Asp Phosphorelay

    No full text
    The RcsCDB His-Asp phosphorelay is shown to positively regulate the bdm (biofilm-dependent modulation) and sra (stationary-phase-induced ribosome-associated protein) genes in Escherichia coli. The regulation is direct and requires an RcsB box next to the bdm −35 element. In addition, bdm is shown to be activated by osmotic shock in an Rcs-dependent way

    Multistress Regulation in Escherichia coli: Expression of osmB Involves Two Independent Promoters Responding either to σ(S) or to the RcsCDB His-Asp Phosphorelay

    No full text
    Transcription of the Escherichia coli osmB gene is induced by several stress conditions. osmB is expressed from two promoters, osmBp1 and osmBp2. The downstream promoter, osmBp2, is induced after osmotic shock or upon entry into stationary phase in a σ(S)-dependent manner. The upstream promoter, osmBp1, is independent of σ(S) and is activated by RcsB, the response regulator of the His-Asp phosphorelay signal transduction system RcsCDB. RcsB is responsible for the induction of osmBp1 following treatment with chlorpromazine. Activation of osmBp1 by RcsB requires a sequence upstream of its −35 element similar to the RcsB binding site consensus, suggesting a direct regulatory role. osmB appears as another example of a multistress-responsive gene whose transcription involves both a σ(S)-dependent promoter and a second one independent of σ(S) but controlled by stress-specific transcription factors

    Insights into the Extracytoplasmic Stress Response of Xanthomonas campestris pv. campestris: Role and Regulation of σE-Dependent Activity ▿ ‡

    No full text
    Xanthomonas campestris pv. campestris is an epiphytic bacterium that can become a vascular pathogen responsible for black rot disease of crucifers. To adapt gene expression in response to ever-changing habitats, phytopathogenic bacteria have evolved signal transduction regulatory pathways, such as extracytoplasmic function (ECF) σ factors. The alternative sigma factor σE, encoded by rpoE, is crucial for envelope stress response and plays a role in the pathogenicity of many bacterial species. Here, we combine different approaches to investigate the role and mechanism of σE-dependent activation in X. campestris pv. campestris. We show that the rpoE gene is organized as a single transcription unit with the anti-σ gene rseA and the protease gene mucD and that rpoE transcription is autoregulated. rseA and mucD transcription is also controlled by a highly conserved σE-dependent promoter within the σE gene sequence. The σE-mediated stress response is required for stationary-phase survival, resistance to cadmium, and adaptation to membrane-perturbing stresses (elevated temperature and ethanol). Using microarray technology, we started to define the σE regulon of X. campestris pv. campestris. These genes encode proteins belonging to different classes, including periplasmic or membrane proteins, biosynthetic enzymes, classical heat shock proteins, and the heat stress σ factor σH. The consensus sequence for the predicted σE-regulated promoter elements is GGAACTN15-17GTCNNA. Determination of the rpoH transcription start site revealed that rpoH was directly regulated by σE under both normal and heat stress conditions. Finally, σE activity is regulated by the putative regulated intramembrane proteolysis (RIP) proteases RseP and DegS, as previously described in many other bacteria. However, our data suggest that RseP and DegS are not only dedicated to RseA cleavage and that the proteolytic cascade of RseA could involve other proteases
    corecore