11 research outputs found

    A new jet/outflow maser in the nucleus of the Compton-thick AGN IRAS 15480-0344

    Get PDF
    Investigations of H2O maser galaxies at X-ray energies reveal that most harbor highly absorbed AGN. Possible correlations between the intrinsic X-ray luminosity and the properties of water maser emission have been suggested. With the aim of looking into these correlations on a more solid statistical basis, we have search for maser emission in a well-defined sample of Compton-thick AGN. Here we report the results of the survey, which yielded a surprisingly high maser detection rate, with a particular focus on the newly discovered luminous water maser in the lenticular (field) S0 galaxy IRAS 15480-0344. Recently, VLBI observations have been obtained to image the line and continuum emission in the nucleus of this galaxy. The radio continuum emission at VLBI scales is resolved into two compact components that are interpreted as jet knots. Based on the single-dish profile, the variability of the maser emission, and the position of the maser spots with respect to these continuum sources, we favor of a jet/outflow origin for the maser emission, consistent with similar cases found in other radio-quiet AGN. This scenario is consistent with the hypothesis of the presence of strong nuclear winds recently invoked to explain the main characteristics of field S0 galaxies

    The Sardinia Radio Telescope . From a technological project to a radio observatory

    Get PDF
    Context. The Sardinia Radio Telescope (SRT) is the new 64 m dish operated by the Italian National Institute for Astrophysics (INAF). Its active surface, comprised of 1008 separate aluminium panels supported by electromechanical actuators, will allow us to observe at frequencies of up to 116 GHz. At the moment, three receivers, one per focal position, have been installed and tested: a 7-beam K-band receiver, a mono-feed C-band receiver, and a coaxial dual-feed L/P band receiver. The SRT was officially opened in September 2013, upon completion of its technical commissioning phase. In this paper, we provide an overview of the main science drivers for the SRT, describe the main outcomes from the scientific commissioning of the telescope, and discuss a set of observations demonstrating the scientific capabilities of the SRT. Aims: The scientific commissioning phase, carried out in the 2012-2015 period, proceeded in stages following the implementation and/or fine-tuning of advanced subsystems such as the active surface, the derotator, new releases of the acquisition software, etc. One of the main objectives of scientific commissioning was the identification of deficiencies in the instrumentation and/or in the telescope subsystems for further optimization. As a result, the overall telescope performance has been significantly improved. Methods: As part of the scientific commissioning activities, different observing modes were tested and validated, and the first astronomical observations were carried out to demonstrate the science capabilities of the SRT. In addition, we developed astronomer-oriented software tools to support future observers on site. In the following, we refer to the overall scientific commissioning and software development activities as astronomical validation. Results: The astronomical validation activities were prioritized based on technical readiness and scientific impact. The highest priority was to make the SRT available for joint observations as part of European networks. As a result, the SRT started to participate (in shared-risk mode) in European VLBI Network (EVN) and Large European Array for Pulsars (LEAP) observing sessions in early 2014. The validation of single-dish operations for the suite of SRT first light receivers and backends continued in the following year, and was concluded with the first call for shared-risk early-science observations issued at the end of 2015. As discussed in the paper, the SRT capabilities were tested (and optimized when possible) for several different observing modes: imaging, spectroscopy, pulsar timing, and transients

    Implementation Of The Algres Testbed (year-2 Version)

    No full text
    attribute grammars decoupled the compiler from the object-oriented library. Algres confirmed its central role for rapid prototyping of data-intensive algorithms. Compiler generating tools have reduced the effort to revise compilers after language changes and helped in maintaining consistency. Some extensions to the tools have been implemented, for allowing multi-sweep evaluation of semantic attributes. Looking at the man-power involved, our organization successfully integrated the work of some twenty individuals, including staff, graduate students and consultants. As compilers were regenerated several times (about ten), some inconvenience was caused by the machine time (a few hours) for the rather complex TF module. Ongoing improvements to Grammatica-ATELIER should alleviate this trouble. To conclude, the orderly structure of the Algres prototype places the project in the position to face without fear the future extensions and revisions that a large innovative language always requires...

    VLBI20-30: a scientific roadmap for the next decade -- The future of the European VLBI Network

    No full text
    This white paper describes the science case for Very Long Baseline Interferometry (VLBI) and provides suggestions towards upgrade paths for the European VLBI Network (EVN). The EVN is a distributed long-baseline radio interferometric array, that operates at the very forefront of astronomical research. Recent results, together with the new science possibilities outlined in this vision document, demonstrate the EVN's potential to generate new and exciting results that will transform our view of the cosmos. Together with e-MERLIN, the EVN provides a range of baseline lengths that permit unique studies of faint radio sources to be made over a wide range of spatial scales. The science cases are reviewed in six chapters that cover the following broad areas: cosmology, galaxy formation and evolution, innermost regions of active galactic nuclei, explosive phenomena and transients, stars and stellar masers in the Milky Way, celestial reference frames and space applications. The document concludes with identifying the synergies with other radio, as well as multi-band/multi-messenger instruments, and provide the recommendations for future improvements. The appendices briefly describe other radio VLBI arrays, the technological framework for EVN developments, and a selection of spectral lines of astrophysical interest below 100 GHz. The document includes a glossary for non-specialists, and a list of acronyms at the end

    VLBI20-30: a scientific roadmap for the next decade -- The future of the European VLBI Network

    Get PDF
    This white paper describes the science case for Very Long Baseline Interferometry (VLBI) and provides suggestions towards upgrade paths for the European VLBI Network (EVN). The EVN is a distributed long-baseline radio interferometric array, that operates at the very forefront of astronomical research. Recent results, together with the new science possibilities outlined in this vision document, demonstrate the EVN's potential to generate new and exciting results that will transform our view of the cosmos. Together with e-MERLIN, the EVN provides a range of baseline lengths that permit unique studies of faint radio sources to be made over a wide range of spatial scales. The science cases are reviewed in six chapters that cover the following broad areas: cosmology, galaxy formation and evolution, innermost regions of active galactic nuclei, explosive phenomena and transients, stars and stellar masers in the Milky Way, celestial reference frames and space applications. The document concludes with identifying the synergies with other radio, as well as multi-band/multi-messenger instruments, and provide the recommendations for future improvements. The appendices briefly describe other radio VLBI arrays, the technological framework for EVN developments, and a selection of spectral lines of astrophysical interest below 100 GHz. The document includes a glossary for non-specialists, and a list of acronyms at the end
    corecore