42 research outputs found

    Medicinal Plant Extracts and Their Use As Wound Closure Inducing Agents

    Get PDF
    Skin insult and damage start a complex healing process that involves a myriad of coordinated reactions at both the cellular and molecular level occurring simultaneously. These processes can be divided into that of cell migration and tissue remodeling of the wound. In addition, it is well known that deep wounds that derive from surgical procedures need a multidisciplinary approach to have a successful wound healing process. Recently, there has been a renowned interest in the identification of active compounds derived from ornamental, edible, and wild plants being used in the cosmetic and skin product industry. Recent reports suggest that active components of several plants such as Propolis and Aloe vera could be used to induce the process of wound healing and tissue regeneration and reducing therefore the time to complete wound closure. Other plant species such as Achillea millefolium or Salvia officinalis have anti-inflammatory properties and promote cellular proliferation contributing to faster tissue regeneration. It has been described that Malva sylvestris influences the formation of fibrosis-free granulation tissue in the skin. Recent observations suggest that Casearia sylvestris induces the angiogenic process. These effects have been evaluated in cell lines, different animal models, and some in randomized clinical trials. In this review we summarize the evidence of plant extracts and their active components (when known) in the acceleration of the wound closure process and tissue repair

    Myeloid-Derived Suppressor Cells Show Different Frequencies in Diabetics and Subjects with Arterial Hypertension

    Get PDF
    Type 2 diabetes mellitus (DM2) is strongly associated with other comorbidities such as obesity, atherosclerosis, and hypertension. Obesity is associated with sustained low-grade inflammatory response due to the production of proinflammatory cytokines. This inflammatory process promotes the differentiation of some myeloid cells, including myeloid-derived suppressor cells (MDSCs). In this study, two groups of individuals were included: DM2 patients and non-DM2 individuals with similar characteristics. Immunolabeling of CD15+ CD14- and CD33+ HLA-DR-/low was performed from whole peripheral blood, and samples were analyzed by flow cytometry, and frequencies of MDSCs and the relationship of these with clinical variables, cytokine profile (measured by cytometric bead array), and anthropometric variables were analyzed. The frequency of CD33+ HLA-DR-/low MDSCs (that produce IL-10 and TGF-β, according to an intracellular detection) is higher in patients with DM2 (P < 0:05), and there is a positive correlation between the frequency of CD15+ CD14- and CD33+ HLA-DR-/low MDSC phenotypes. DM2 patients have an increased concentration of serum IL-5 (P < 0:05). Also, a negative correlation between the frequency of CD15+CD14- MDSCs and LDL cholesterol was found. Our group of DM2 patients have an increased frequency of mononuclear MDSC CD33+ HLA-DR-/low that produce TGF-β and IL-10. These cytokines have been associated with immune modulation and reduced T cell responses. DM2 and non-DM2 subjects show a similar cytokine profile, but the DM2 patients have anincreased concentration of IL-5

    Lipid Metabolism Alterations in a Rat Model of Chronic and Intergenerational Exposure to Arsenic

    Get PDF
    Chronic exposure to arsenic (As), whether directly through the consumption of contaminated drinking water or indirectly through the daily intake of As-contaminated food, is a health threat for more than 150 million people worldwide. Epidemiological studies found an association between chronic consumption of As and several pathologies, the most common being cancer-related disorders. However, As consumption has also been associated with metabolic disorders that could lead to diverse pathologies, suchas type 2 diabetes mellitus, nonalcoholic fatty liver disease, and obesity. Here, we used ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization/quadrupole time-of-flight mass spectrometry (ESI-QToF) to assess the effect of chronic intergenerational As exposure on the lipid metabolism profiles of serum from 4-month-old Wistar rats exposed to As prenatally and also during early life in drinking water (3 ppm). Significant differences in the levels of certain identified lyso-phospholipids, phosphatidylcholines, and triglycerides were found between the exposed rats and the control groups, as well as between the sexes. Significantly increased lipid oxidation determined by the malondialdehyde (MDA) method was found in exposed rats compared with controls. Chronic intergenerational As exposure alters the rat lipidome, increases lipid oxidation, and dysregulates metabolic pathways, the factors associated with the chronic inflammation present in different diseases associated with chronic exposure to As (i.e., keratosis, Bowen’s disease, and kidney, liver, bladder, and lung cancer)

    Bioinformatic prediction of the molecular links between Alzheimer’s disease and diabetes mellitus

    No full text
    Background Alzheimer’s disease (AD) and type 2 diabetes mellitus (DM2) are chronic degenerative diseases with complex molecular processes that are potentially interconnected. The aim of this work was to predict the potential molecular links between AD and DM2 from different sources of biological information. Materials and Methods In this work, data mining of nine databases (DisGeNET, Ensembl, OMIM, Protein Data Bank, The Human Protein Atlas, UniProt, Gene Expression Omnibus, Human Cell Atlas, and PubMed) was performed to identify gene and protein information that was shared in AD and DM2. Next, the information was mapped to human protein-protein interaction (PPI) networks based on experimental data using the STRING web platform. Then, gene ontology biological process (GOBP) and pathway analyses with EnrichR showed its specific and shared biological process and pathway deregulations. Finally, potential biomarkers and drug targets were predicted with the Metascape platform. Results A total of 1,551 genes shared in AD and DM2 were identified. The highest average degree of nodes within the PPI was for DM2 (average = 2.97), followed by AD (average degree = 2.35). GOBP for AD was related to specific transcriptional and translation genetic terms occurring in neurons cells. The GOBP and pathway information for the association AD-DM2 were linked mainly to bioenergetics and cytokine signaling. Within the AD-DM2 association, 10 hub proteins were identified, seven of which were predicted to be present in plasma and exhibit pharmacological interaction with monoclonal antibodies in use, anticancer drugs, and flavonoid derivatives. Conclusion Our data mining and analysis strategy showed that there are a plenty of biological information based on experiments that links AD and DM2, which could provide a rational guide to design further diagnosis and treatment for AD and DM2

    Metformin inhibits wound healing <i>in vivo</i>.

    No full text
    <p>A rat model of wound healing was used to evaluate the effect of metformin on cell proliferation and wound closure. (A) The panel shows the effect of metformin (300mg/kg) in the healing of a standardized model of wound healing, PBS was used as a control and topical prednisolone (0.25 mg) has been used in this model as control of delayed healing. Representative photographs of each time point are shown. (B) Glucose concentrations were measured daily in the animals by means of a portable glucometer (mg/dl), to monitor the effect of metformin compared to PBS and prednisolone treatment. (C) Ulcer diameters were measured from the referenced images using Image J, the ruler in each photograph was used as a standard to set scale for each image. Groups of animals of N = 12 animals per treatment group were used for the experiments in two independent experiments. Analyses of glucose and area differences were made by means of a Two-way ANOVA. P<0.05 was considered statistically significant.</p

    Metformin inhibits HaCaT cell proliferation and colony formation.

    No full text
    <p>1000 cells/well human HaCaT cells were plated onto 6-well and incubated at 37°C with 5% CO<sub>2</sub>. After 24h, the culture medium was replaced with fresh culture medium containing 0.0 mM, 10 mM or 20 mM every 3 days for 9 days. (A) At 9 days the cells colonies were stained and counted as described in the methods section. (B) Colony area was determined using Image J program. (C) Image is representative of the size of colonies observed for each of the treatments. Data are representative of six independent experiments.</p
    corecore