74 research outputs found

    Developing a laboratory based CCMT programme status reporting system in the Ekurhuleni Health District

    Get PDF
    The purpose of this study was to develop a laboratory based Comprehensive Care, Management and Treatment of HIV and AIDS (CCMT) programme status reporting system using a methodological research study design. Quantitative data was collected using a request form and qualitative data was collected using structured questionnaires. For the study 1190 eligible CD4 samples were received, of which 1004 (84%) had a valid CCMT programme status. Overall 32% of the CD4 samples had a pre-ART status (n=383) and 52% had an ART status (n=621). The remaining 16% of CD4 samples (n=186) did not have a valid CCMT programme status. A pre-ART register was generated and assessed using a structured questionnaire. Based on the study findings a recommendation has been made to adopt the two-tick design for all NHLS request forms where programmatic data is collected. Additionally the CCMT programme status reporting system is recommended for rollout to other health districtsHealth StudiesM.A. (Public Health with specialisation in Medical Informatics

    Compliance to HIV treatment monitoring guidelines can reduce laboratory costs

    Get PDF
    Background: Panel tests are a predetermined group of tests commonly requested together to provide a comprehensive and conclusive diagnosis, for example, liver function test (LFT). South African HIV antiretroviral treatment (ART) guidelines recommend individual tests for toxicity monitoring over panel tests. In 2008, the National Health Laboratory Services (NHLS) request form was redesigned to list individual tests instead of panel tests and removed the ‘other tests’ box option to facilitate efficient ART laboratory monitoring.Objectives: This study aimed to demonstrate changes in laboratory expenditure, for individual and panel tests, for ART toxicity monitoring.Method: NHLS Corporate Data Warehouse (CDW) data were extracted for HIV conditional grant accounts to assess ART toxicity monitoring laboratory expenditure between 2010/2011 and 2014/2015. Data were classified based on the tests requested, as either panel (LFT or urea and electrolytes) or individual (alanine transaminase or creatinine) tests.Results: Expenditure on panel tests reduced from R340 million in 2010/2011 to R140m by 2014/2015 (reduction of R204m) and individual test expenditure increased from R34m to R76m (twofold increase). A significant reduction in LFT panel expenditure was noted, reducing from R322m in 2010/2011 to R130m in 2014/2015 (60% reduction).Conclusion: Changes in toxicity monitoring guidelines and the re-engineering of the NHLS request form successfully reduced expenditure on panel tests relative to individual tests. The introduction of order entry systems could further reduce unnecessary laboratory expenditure

    Using laboratory data to categorise CD4 laboratory turn-around-time performance across a national programme

    Get PDF
    Background and objective: The National Health Laboratory Service provides CD4 testing through an integrated tiered service delivery model with a target laboratory turn-around time (TAT) of 48 h. Mean TAT provides insight into national CD4 laboratory performance. However, it is not sensitive enough to identify inefficiencies of outlying laboratories or predict the percentage of samples meeting the TAT target. The aim of this study was to describe the use of the median, 75th percentile and percentage within target of laboratory TAT data to categorise laboratory performance.   Methods: Retrospective CD4 laboratory data for 2015–2016 fiscal year were extracted from the corporate data warehouse. The laboratory TAT distribution and percentage of samples within the 48 h target were assessed. A scatter plot was used to categorise laboratory performance into four quadrants using both the percentage within target and 75th percentile TAT. The laboratory performance was labelled good, satisfactory or poor.   Results: TAT data reported a positive skew with a mode of 13 h and a median of 17 h and 75th percentile of 25 h. Overall, 93.2% of CD4 samples had a laboratory TAT of less than 48 h. 48 out of 52 laboratories reported good TAT performance, i.e. percentage within target > 85% and 75th percentile ≤ 48 h, with two categorised as satisfactory (one parameter met), and two as poor performing laboratories (failed both parameters).   Conclusion: This study demonstrated the feasibility of utilising laboratory data to categorise laboratory performance. Using the quadrant approach for TAT data, laboratories that need interventions can be highlighted for root cause analysis assessment

    Analysis of HIV disease burden by calculating the percentages of patients with CD4 counts

    Get PDF
    Background. South Africa (SA)’s Comprehensive HIV and AIDS Care, Management and Treatment (CCMT) programme has reduced new HIV infections and HIV-related deaths. In spite of progress made, 11.2% of South Africans (4.02 million) were living with HIV in 2015.Objective. The National Health Laboratory Service (NHLS) in SA performs CD4 testing in support of the CCMT programme and collates data through the NHLS Corporate Data Warehouse. The objective of this study was to assess the distribution of CD4 counts <100 cells/µL (defining severely immunosuppressed HIV-positive patients) and >500 cells/µL (as an HIV-positive ‘wellness’ indicator).Methods. CD4 data were extracted for the financial years 2010/11 and 2014/15, according to the district where the test was ordered, for predefined CD4 ranges. National and provincial averages of CD4 counts <100 and >500 cells/µL were calculated. Data were analysed using Stata 12 and mapping was done with ArcGIS software, reporting percentages of CD4 counts <100 and >500 cells/µL by district.Results. The national average percentage of patients with CD4 counts <100 cells/µL showed a marked decrease (by 22%) over the 5-year study period, with a concurrent increase in CD4 counts >500 cells/µL (by 57%). District-by-district analysis showed that in 2010/11, 44/52 districts had >10% of CD4 samples with counts <100 cells/µL, decreasing to only 17/52 districts by 2014/15. Overall, districts in the Western Cape and KwaZulu-Natal had the lowest percentages of CD4 counts <100 cells/µL, as well as the highest percentages of counts >500 cells/µL. In contrast, in 2014/15, the highest percentages of CD4 counts <100 cells/µL were noted in the West Rand (Gauteng), Vhembe (Limpopo) and Nelson Mandela Bay (Eastern Cape) districts, where the lowest percentages of counts >500 cells/µL were also noted.Conclusions. The percentages of CD4 counts <100 cells/µL highlighted here reveal districts with positive change suggestive of programmatic improvements, and also highlight districts requiring local interventions to achieve the UNAIDS/SA National Department of Health 90-90-90 HIV treatment goals. The study further underscores the value of using NHLS laboratory data, an underutilised national resource, to leverage laboratory test data to enable a more comprehensive understanding of programme-specific health indicators.

    Analysis of HIV disease burden by calculating the percentages of patients with CD4 counts <100 cells/µL across 52 districts reveals hot spots for intensified commitment to programmatic support

    Get PDF
    Background. South Africa (SA)’s Comprehensive HIV and AIDS Care, Management and Treatment (CCMT) programme has reduced new HIV infections and HIV-related deaths. In spite of progress made, 11.2% of South Africans (4.02 million) were living with HIV in 2015. Objective. The National Health Laboratory Service (NHLS) in SA performs CD4 testing in support of the CCMT programme and collates data through the NHLS Corporate Data Warehouse. The objective of this study was to assess the distribution of CD4 counts 500 cells/µL (as an HIV-positive ‘wellness’ indicator). Methods. CD4 data were extracted for the financial years 2010/11 and 2014/15, according to the district where the test was ordered, for predefined CD4 ranges. National and provincial averages of CD4 counts 500 cells/µL were calculated. Data were analysed using Stata 12 and mapping was done with ArcGIS software, reporting percentages of CD4 counts 500 cells/µL by district. Results. The national average percentage of patients with CD4 counts 500 cells/µL (by 57%). District-by-district analysis showed that in 2010/11, 44/52 districts had >10% of CD4 samples with counts 500 cells/µL. In contrast, in 2014/15, the highest percentages of CD4 counts 500 cells/µL were also noted. Conclusions. The percentages of CD4 counts <100 cells/µL highlighted here reveal districts with positive change suggestive of programmatic improvements, and also highlight districts requiring local interventions to achieve the UNAIDS/SA National Department of Health 90-90-90 HIV treatment goals. The study further underscores the value of using NHLS laboratory data, an underutilised national resource, to leverage laboratory test data to enable a more comprehensive understanding of programme-specific health indicators

    Programmatic implications of implementing the relational algebraic capacitated location (RACL) algorithm outcomes on the allocation of laboratory sites, test volumes, platform distribution and space requirements

    Get PDF
    Introduction: CD4 testing in South Africa is based on an integrated tiered service delivery model that matches testing demand with capacity. The National Health Laboratory Service has predominantly implemented laboratory-based CD4 testing. Coverage gaps, over-/under-capacitation and optimal placement of point-of-care (POC) testing sites need investigation. Objectives: We assessed the impact of relational algebraic capacitated location (RACL) algorithm outcomes on the allocation of laboratory and POC testing sites. Methods: The RACL algorithm was developed to allocate laboratories and POC sites to ensure coverage using a set coverage approach for a defined travel time (T). The algorithm was repeated for three scenarios (A: T = 4; B: T = 3; C: T = 2 hours). Drive times for a representative sample of health facility clusters were used to approximate T. Outcomes included allocation of testing sites, Euclidian distances and test volumes. Additional analysis included platform distribution and space requirement assessment. Scenarios were reported as fusion table maps. Results: Scenario A would offer a fully-centralised approach with 15 CD4 laboratories without any POC testing. A significant increase in volumes would result in a four-fold increase at busier laboratories. CD4 laboratories would increase to 41 in scenario B and 61 in scenario C. POC testing would be offered at two sites in scenario B and 20 sites in scenario C. Conclusion: The RACL algorithm provides an objective methodology to address coverage gaps through the allocation of CD4 laboratories and POC sites for a given T. The algorithm outcomes need to be assessed in the context of local conditions

    District and sub-district analysis of cryptococcal antigenaemia prevalence and specimen positivity in KwaZulu-Natal, South Africa

    Get PDF
    Background: Cryptococcal meningitis (CM) is a leading cause of mortality among HIV-positive South Africans. Reflex cryptococcal antigen (CrAg) testing of remnant plasma was offered as a pilot prior to implementation in October 2016 in KwaZulu-Natal province. The national reflex CrAg positivity was 5.4% compared to 7.3% for KwaZulu-Natal. Objectives: The aim of this study was to interrogate CrAg positivity by health levels to identify hotspots. Method: Data for the period October 2016 to June 2017 were analysed. Health district CrAg positivity and prevalence were calculated, with the latter using de-duplicated patient data. The district CrAg positivity and the number of CrAg-positive specimens per health facility were mapped using ArcGIS. For districts with the highest CrAg positivity, a sub-district CrAg positivity analysis was conducted. Results: The provincial CrAg positivity was 7.6%. District CrAg positivity ranged from 5.7% (Ugu) to 9.6% (Umkhanyakude) with prevalence ranging from 5.5% (Ugu) to 9.7% (Umkhanyakude). The highest CrAg positivity was reported for the Umkhanyakude (9.6%) and King Cetswayo (9.5%) districts. In these two districts, CrAg positivity of 10% was noted in the Umhlabuyalingana (10.0%), Jozini (10.2%), uMhlathuze (10.5%) and Nkandla (10.8%) subdistricts. In these subdistricts, 135 CrAg-positive samples were reported for the Ngwelezane hospital followed by 41 and 43 at the Hlabisa and Manguzi hospitals respectively. Conclusion: Cryptococcal antigen positivity was not uniformly distributed at either the district or sub-district levels, with identified facility hotspots in the Umkhanyakude and King Cetswayo districts. This study demonstrates the value of laboratory data to identify hotspots for planning programmatic interventions

    HIV Viral Load Testing in the South African Public Health Setting in the Context of Evolving ART Guidelines and Advances in Technology, 2013 - 2022

    Get PDF
    HIV viral load (VL) testing plays a key role in the clinical management of HIV as a marker of adherence and antiretroviral efficacy. To date, national and international antiretroviral treatment recommendations have evolved to endorse routine VL testing. South Africa (SA) has recommended routine VL testing since 2004. Progressively, the centralised HIV VL program managed by its National Health Laboratory Service (NHLS) has undergone expansive growth. Retrospective de-identified VL data from 2013 to 2022 were evaluated to review program performance. Test volumes increased from 1,961,720 performed in 2013 to 45,334,864 in 2022. The median total in-laboratory turnaround time (TAT) ranged from 94 h (2015) to 51 h (2022). Implementation of two new assays improved median TATs in all laboratories. Samples of VL greater than 1000 copies/mL declined steadily. Despite initial increases, samples of fewer than 50 copies/mL stagnated at about 70% from 2019 and declined to 68% in 2022. Some variations between assays were observed. Overall, the SA VL program is successful. The scale of the VL program, the largest of its kind in the world by some margin, provides lessons for future public health programs dependent on laboratories for patient outcome and program performance monitoring

    An integrated tiered service delivery model (ITSDM) based on local CD4 testing demands can improve turn-around times and save costs whilst ensuring accessible and scalable CD4 services across a national programme.

    No full text
    The South African National Health Laboratory Service (NHLS) responded to HIV treatment initiatives with two-tiered CD4 laboratory services in 2004. Increasing programmatic burden, as more patients access anti-retroviral therapy (ART), has demanded extending CD4 services to meet increasing clinical needs. The aim of this study was to review existing services and develop a service-model that integrated laboratory-based and point-of-care testing (POCT), to extend national coverage, improve local turn-around/(TAT) and contain programmatic costs.NHLS Corporate Data Warehouse CD4 data, from 60-70 laboratories and 4756 referring health facilities was reviewed for referral laboratory workload, respective referring facility volumes and related TAT, from 2009-2012.An integrated tiered service delivery model (ITSDM) is proposed. Tier-1/POCT delivers CD4 testing at single health-clinics providing ART in hard-to-reach areas (<5 samples/day). Laboratory-based testing is extended with Tier-2/POC-Hubs (processing ≤ 30-40 CD4 samples/day), consolidating POCT across 8-10 health-clinics with other HIV-related testing and Tier-3/'community' laboratories, serving ≤ 40 health-clinics, processing ≤ 150 samples/day. Existing Tier-4/'regional' laboratories serve ≤ 100 facilities and process <350 samples/day; Tier-5 are high-volume 'metro'/centralized laboratories (>350-1500 tests/day, serving ≥ 200 health-clinics). Tier-6 provides national support for standardisation, harmonization and quality across the organization.The ITSDM offers improved local TAT by extending CD4 services into rural/remote areas with new Tier-3 or Tier-2/POC-Hub services installed in existing community laboratories, most with developed infrastructure. The advantage of lower laboratory CD4 costs and use of existing infrastructure enables subsidization of delivery of more expensive POC services, into hard-to-reach districts without reasonable access to a local CD4 laboratory. Full ITSDM implementation across 5 service tiers (as opposed to widespread implementation of POC testing to extend service) can facilitate sustainable 'full service coverage' across South Africa, and save>than R125 million in HIV/AIDS programmatic costs. ITSDM hierarchical parental-support also assures laboratory/POC management, equipment maintenance, quality control and on-going training between tiers
    • …
    corecore