366 research outputs found

    TPH2 polymorphisms and expression in Prader-Willi syndrome subjects with differing genetic subtypes

    Get PDF
    Prader-Willi syndrome (PWS) is a genetic imprinting disease that causes developmental and behavioral disturbances resulting from loss of expression of genes from the paternal chromosome 15q11-q13 region. In about 70% of subjects, this portion of the paternal chromosome is deleted, while 25% have two copies of the maternal chromosome 15, or uniparental maternal disomy (UPD; the remaining subjects have imprinting center defects. There are several documented physical and behavioral differences between the two major PWS genetic subtypes (deletion and UPD) indicating the genetic subtype plays a role in clinical presentation. Serotonin is known to be disturbed in PWS and affects both eating behavior and compulsion, which are reported to be abnormal in PWS. We investigated the tryptophan hydroxylase gene (TPH2), the rate-limiting enzyme in the production of brain serotonin, by analyzing three different TPH2 gene polymorphisms, transcript expression, and correlation with PWS genetic subtype. DNA and RNA from lymphoblastoid cell lines derived from 12 PWS and 12 comparison subjects were used for the determination of genetic subtype, TPH2 polymorphisms and quantitative RT-PCR analysis. A similar frequency of TPH2 polymorphisms was seen in the PWS and comparison subjects with PWS deletion subjects showing increased expression with one or more TPH2 polymorphism. Both PWS deletion and PWS UPD subjects had significantly lower TPH2 expression than control subjects and PWS deletion subjects had significantly lower TPH2 expression compared with PWS UPD subjects. PWS subjects with 15q11-q13 deletions had lower TPH2 expression compared with PWS UPD or control subjects, requiring replication and further studies to identify the cause including identification of disturbed gene interactions resulting from the deletion process

    Dose Effects of Oxaliplatin on Persistent and Transient Na+ Conductances and the Development of Neurotoxicity

    Get PDF
    BACKGROUND: Oxaliplatin, a platinum-based chemotherapy utilised in the treatment of colorectal cancer, produces two forms of neurotoxicity--acute sensorimotor neuropathic symptoms and a dose-limiting chronic sensory neuropathy. Given that a Na(+) channelopathy has been proposed as the mechanism underlying acute oxaliplatin-induced neuropathy, the present study aimed to determine specific mechanisms of Na(+) channel dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: Specifically the function of transient and persistent Na(+) currents were followed during treatment and were investigated in relation to oxaliplatin dose level. Eighteen patients were assessed before and after a single oxaliplatin infusion with motor and sensory axonal excitability studies performed on the median nerve at the wrist. While refractoriness (associated with Na(+) channel inactivation) was significantly altered post-oxaliplatin infusion in both motor (Pre: 31.7±6.4%; Post: 68.8±14.5%; P≤.001) and sensory axons (Pre: 31.4±5.4%; Post: 21.4±5.5%; P<.05), strength-duration time constant (marker of persistent Na(+) conductances) was not significantly altered post-infusion (Motor Pre: 0.395±0.01 ms; Post: 0.394±0.02 ms; NS; Sensory Pre:0.544±0.03 ms; Post: 0.535±0.05 ms; NS). However, changes in strength-duration time constant were significantly correlated with changes in refractoriness in motor and sensory axons (Motor correlation coefficient = -.65; P<.05; Sensory correlation coefficient = .67; P<.05). CONCLUSIONS/SIGNIFICANCE: It is concluded that the predominant effect of acute oxaliplatin exposure in human motor and sensory axons is mediated through changes in transient rather than persistent Na(+) conductances. These findings are likely to have implications for the design and trial of neuroprotective strategies

    Induction of aromatic ring: cleavage dioxygenases in Stenotrophomonas maltophilia strain KB2 in cometabolic systems

    Get PDF
    Stenotrophomonas maltophilia KB2 is known to produce different enzymes of dioxygenase family. The aim of our studies was to determine activity of these enzymes after induction by benzoic acids in cometabolic systems with nitrophenols. We have shown that under cometabolic conditions KB2 strain degraded 0.25–0.4 mM of nitrophenols after 14 days of incubation. Simultaneously degradation of 3 mM of growth substrate during 1–3 days was observed depending on substrate as well as cometabolite used. From cometabolic systems with nitrophenols as cometabolites and 3,4-dihydroxybenzoate as a growth substrate, dioxygenases with the highest activity of protocatechuate 3,4-dioxygenase were isolated. Activity of catechol 1,2- dioxygenase and protocatechuate 4,5-dioxygenase was not observed. Catechol 2,3-dioxygenase was active only in cultures with 4-nitrophenol. Ability of KB2 strain to induce and synthesize various dioxygenases depending on substrate present in medium makes this strain useful in bioremediation of sites contaminated with different aromatic compounds

    Attenuation of doxorubicin-induced cardiotoxicity by mdivi-1: a mitochondrial division/mitophagy inhibitor

    Get PDF
    Doxorubicin is one of the most effective anti-cancer agents. However, its use is associated with adverse cardiac effects, including cardiomyopathy and progressive heart failure. Given the multiple beneficial effects of the mitochondrial division inhibitor (mdivi-1) in a variety of pathological conditions including heart failure and ischaemia and reperfusion injury, we investigated the effects of mdivi-1 on doxorubicin-induced cardiac dysfunction in naïve and stressed conditions using Langendorff perfused heart models and a model of oxidative stress was used to assess the effects of drug treatments on the mitochondrial depolarisation and hypercontracture of cardiac myocytes. Western blot analysis was used to measure the levels of p-Akt and p-Erk 1/2 and flow cytometry analysis was used to measure the levels p-Drp1 and p-p53 upon drug treatment. The HL60 leukaemia cell line was used to evaluate the effects of pharmacological inhibition of mitochondrial division on the cytotoxicity of doxorubicin in a cancer cell line. Doxorubicin caused a significant impairment of cardiac function and increased the infarct size to risk ratio in both naïve conditions and during ischaemia/reperfusion injury. Interestingly, co-treatment of doxorubicin with mdivi-1 attenuated these detrimental effects of doxorubicin. Doxorubicin also caused a reduction in the time taken to depolarisation and hypercontracture of cardiac myocytes, which were reversed with mdivi-1. Finally, doxorubicin caused a significant elevation in the levels of signalling proteins p-Akt, p-Erk 1/2, p-Drp1 and p-p53. Co-incubation of mdivi-1 with doxorubicin did not reduce the cytotoxicity of doxorubicin against HL-60 cells. These data suggest that the inhibition of mitochondrial fission protects the heart against doxorubicin-induced cardiac injury and identify mitochondrial fission as a new therapeutic target in ameliorating doxorubicin-induced cardiotoxicity without affecting its anti-cancer properties

    Clinical implications of gait analysis in the rehabilitation of adult patients with "Prader-Willi" Syndrome: a cross-sectional comparative study ("Prader-Willi" Syndrome vs matched obese patients and healthy subjects)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Being severely overweight is a distinctive clinical feature of Prader-Willi Syndrome (PWS). PWS is a complex multisystem disorder, representing the most common form of genetic obesity. The aim of this study was the analysis of the gait pattern of adult subjects with PWS by using three-Dimensional Gait Analysis. The results were compared with those obtained in a group of obese patients and in a group of healthy subjects.</p> <p>Methods</p> <p>Cross-sectional, comparative study: 19 patients with PWS (11 males and 8 females, age: 18–40 years, BMI: 29.3–50.3 kg/m<sup>2</sup>); 14 obese matched patients (5 males and 9 females, age: 18–40 years, BMI: 34.3–45.2 kg/m<sup>2</sup>); 20 healthy subjects (10 males and 10 females, age: 21–41 years, BMI: 19.3–25.4 kg/m<sup>2</sup>). Kinematic and kinetic parameters during walking were assessed by an optoelectronic system and two force platforms.</p> <p>Results</p> <p>PWS adult patients walked slower, had a shorter stride length, a lower cadence and a longer stance phase compared with both matched obese, and healthy subjects. Obese matched patients showed spatio-temporal parameters significantly different from healthy subjects.</p> <p>Furthermore, Range Of Motion (ROM) at knee and ankle, and plantaflexor activity of PWS patients were significantly different between obese and healthy subjects. Obese subjects revealed kinematic and kinetic data similar to healthy subjects.</p> <p>Conclusion</p> <p>PWS subjects had a gait pattern significantly different from obese patients. Despite that, both groups had a similar BMI. We suggest that PWS gait abnormalities may be related to abnormalities in the development of motor skills in childhood, due to precocious obesity. A tailored rehabilitation program in early childhood of PWS patients could prevent gait pattern changes.</p

    Defining neurotrauma in administrative data using the International Classification of Diseases Tenth Revision

    Get PDF
    Abstract Background It is essential to use a definition that is precise and accurate for the surveillance of traumatic brain injuries (TBI) and spinal cord injuries (SCI). This paper reviews the International Classification of Diseases 10th revision (ICD-10) definitions used internationally to inform the definition for neurotrauma surveillance using administrative data in Ontario, Canada. Methods PubMed, Web of Science, Medline and the grey literature were searched for keywords "spinal cord injuries" or "brain injuries" and "international classification of diseases". All papers and reports that used an ICD-10 definition were included. To determine the ICD-10 codes for inclusion consensus across papers and additional evidence were sought to look at the correlation between the condition and brain or spinal injuries. Results Twenty-four articles and reports were identified; 15 unique definitions for TBI and 7 for SCI were found. The definitions recommended for use in Ontario by this paper are F07.2, S02.0, S02.1, S02.3, S02.7, S02.8, S02.9, S06, S07.1, T90.2, and T90.5 for traumatic brain injuries and S14.0, S14.1, S24.0, S24.1, S34.1, S34.0, S34.3, T06.0, T06.1 and T91.3 for spinal cord injuries. Conclusions Internationally, inconsistent definitions are used to define brain and spinal cord injuries. An abstraction study of data would be an asset in understanding the effects of inclusion and exclusion of codes in the definition. This paper offers a definition of neurotrauma for surveillance in Ontario, but the definition could be applied to other countries that have mandated administrative data collection
    corecore