31 research outputs found

    Overexpression of Mcl-1 exacerbates lymphocyte accumulation and autoimmune kidney disease in lpr mice

    Get PDF
    Cell death by apoptosis has a critical role during embryonic development and in maintaining tissue homeostasis. In mammals, there are two converging apoptosis pathways: the ‘extrinsic’ pathway, which is triggered by engagement of cell surface ‘death receptors’ such as Fas/APO-1; and the ‘intrinsic’ pathway, which is triggered by diverse cellular stresses, and is regulated by prosurvival and pro-apoptotic members of the Bcl-2 family of proteins. Pro-survival Mcl-1, which can block activation of the proapoptotic proteins, Bax and Bak, appears critical for the survival and maintenance of multiple haemopoietic cell types. To investigate the impact on haemopoiesis of simultaneously inhibiting both apoptosis pathways, we introduced the vavP-Mcl-1 transgene, which causes overexpression of Mcl-1 protein in all haemopoietic lineages, into Faslpr/lpr mice, which lack functional Fas and are prone to autoimmunity. The combined mutations had a modest impact on myelopoiesis, primarily an increase in the macrophage/monocyte population in Mcl-1tg/lpr mice compared with lpr or Mcl-1tg mice. The impact on lymphopoiesis was striking, with a marked elevation in all major lymphoid subsets, including the non-conventional double-negative (DN) T cells (TCRβ+ CD4– CD8– B220+ ) characteristic of Faslpr/lpr mice. Of note, the onset of autoimmunity was markedly accelerated in Mcl-1tg/lpr mice compared with lpr mice, and this was preceded by an increase in immunoglobulin (Ig)-producing cells and circulating autoantibodies. This degree of impact was surprising, given the relatively mild phenotype conferred by the vavP-Mcl-1 transgene by itself: a two- to threefold elevation of peripheral B and T cells, no significant increase in the non-conventional DN T-cell population and no autoimmune disease. Comparison of the phenotype with that of other susceptible mice suggests that the development of autoimmune disease in Mcl-1tg/lpr mice may be influenced not only by Ig-producing cells but also other haemopoietic cell types

    Mnt modulates Myc-driven lymphomagenesis

    Get PDF
    The transcriptional represser Mnt is a functional antagonist of the proto-oncoprotein Myc. Both Mnt and Myc utilise Max as an obligate partner for DNA binding, and Myc/Max and Mnt/Max complexes compete for occupancy at E-box DNA sequences in promoter regions. We have previously shown in transgenic mouse models that the phenotype and kinetics of onset of haemopoietic tumours varies with the level of Myc expression. We reasoned that a decrease in the level of Mnt would increase the functional level of Myc and accelerate Myc-driven tumorigenesis. We tested the impact of reduced Mnt in three models of myc transgenic mice and in p53+/− mice. To our surprise, mnt heterozygosity actually slowed Myc-driven tumorigenesis in vavP-MYC10 and Eμ-myc mice, suggesting that Mnt facilitates Myc-driven oncogenesis. To explore the underlying cause of the delay in tumour development, we enumerated Myc-driven cell populations in healthy young vavP-MYC10 and Eμ-myc mice, expecting that the reduced rate of leukaemogenesis in mnt heterozygous mice would be reflected in a reduced number of preleukaemic cells, due to increased apoptosis or reduced proliferation or both. However, no differences were apparent. Furthermore, when mnt+/+ and mnt+/− pre-B cells from healthy young Eμ-myc mice were compared in vitro, no differences were seen in their sensitivity to apoptosis or in cell size or cell cycling. Moreover, the frequencies of apoptotic, senescent and proliferating cells were comparable in vivo in mnt+/− and mnt+/+ Eμ-myc lymphomas. Thus, although mnt heterozygosity clearly slowed lymphomagenesis in vavP-MYC10 and Eμ-myc mice, the change(s) in cellular properties responsible for this effect remain to be identified

    BRCA1 is required for maintenance of phospho-Chk1 and G<sub>2</sub>/M arrest during DNA cross-link repair in DT40 cells

    Get PDF
    The Fanconi anemia DNA repair pathway is pivotal for the efficient repair of DNA interstrand cross-links. Here, we show that FA-defective (Fancc(-)) DT40 cells arrest in G(2) phase following cross-link damage and trigger apoptosis. Strikingly, cell death was reduced in Fancc(-) cells by additional deletion of the BRCA1 tumor suppressor, resulting in elevated clonogenic survival. Increased resistance to cross-link damage was not due to loss of toxic BRCA1-mediated homologous recombination but rather through the loss of a G(2) checkpoint. This proapoptotic role also required the BRCA1-A complex member ABRAXAS (FAM175A). Finally, we show that BRCA1 promotes G(2) arrest and cell death by prolonging phosphorylation of Chk1 on serine 345 after DNA damage to sustain arrest. Our data imply that DNA-induced cross-link death in cells defective in the FA pathway is dependent on the ability of BRCA1 to prolong cell cycle arrest in G(2) phase

    Glucagonoma Masquerading as a Mucinous Cancer of the Ovary: Lessons from Cell Biology

    Get PDF
    High-grade mucinous ovarian cancer (HGMOC) is often a misnomer as the majority of cases are metastatic disease with a gastro-intestinal origin. The standard platinum-based ovarian cancer (OC) chemotherapy regimens are often ineffective, and there are insufficient data to support the use of colorectal cancer (CRC) chemotherapy regimens due to the rarity of HGMOC. We described a cohort of four consecutive suspected HGMOC cases treated at the Royal Women’s Hospital, Melbourne in 2012. Two cases were treated as primary MOC, whereas the other two were considered to be metastatic CRC based on histopathological and clinical evidence. From the RNAseq analysis, we identified two cases of HGMOC whose gene expression profiles were consistent with mucinous epithelial OC, one case that was treated as metastatic CRC with gene expression profile correlated with CRC and one case with neuroendocrine (NET) gene expression features. Interestingly, glucagon was over-expressed in this tumor that was subsequently confirmed by immunohistochemistry. These findings suggest a rare glucagonoma-like NET appendiceal tumor that had metastasized to the surface of ovary and were unresponsive to CRC chemotherapy regimens. In summary, a carefully curated panel of expression markers and selected functional genomics could provide diagnosis and treatment guidance for patients with possible HGMOC

    Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells

    Get PDF
    The cytokine IL-15 is required for natural killer (NK) cell homeostasis; however, the intrinsic mechanism governing this requirement remains unexplored. Here we identify the absolute requirement for myeloid cell leukaemia sequence-1 (Mcl1) in the sustained survival of NK cells in vivo. Mcl1 is highly expressed in NK cells and regulated by IL-15 in a dose-dependent manner via STAT5 phosphorylation and subsequent binding to the 3'-UTR of Mcl1. Specific deletion of Mcl1 in NK cells results in the absolute loss of NK cells from all tissues owing to a failure to antagonize pro-apoptotic proteins in the outer mitochondrial membrane. This NK lymphopenia results in mice succumbing to multiorgan melanoma metastases, being permissive to allogeneic transplantation and being resistant to toxic shock following polymicrobial sepsis challenge. These results clearly demonstrate a non-redundant pathway linking IL-15 to Mcl1 in the maintenance of NK cells and innate immune responses in vivo

    Overexpression of Mcl-1 exacerbates lymphocyte accumulation and autoimmune kidney disease in lpr mice

    Get PDF
    Cell death by apoptosis has a critical role during embryonic development and in maintaining tissue homeostasis. In mammals, there are two converging apoptosis pathways: the ‘extrinsic’ pathway, which is triggered by engagement of cell surface ‘death receptors’ such as Fas/APO-1; and the ‘intrinsic’ pathway, which is triggered by diverse cellular stresses, and is regulated by prosurvival and pro-apoptotic members of the Bcl-2 family of proteins. Pro-survival Mcl-1, which can block activation of the proapoptotic proteins, Bax and Bak, appears critical for the survival and maintenance of multiple haemopoietic cell types. To investigate the impact on haemopoiesis of simultaneously inhibiting both apoptosis pathways, we introduced the vavP-Mcl-1 transgene, which causes overexpression of Mcl-1 protein in all haemopoietic lineages, into Faslpr/lpr mice, which lack functional Fas and are prone to autoimmunity. The combined mutations had a modest impact on myelopoiesis, primarily an increase in the macrophage/monocyte population in Mcl-1tg/lpr mice compared with lpr or Mcl-1tg mice. The impact on lymphopoiesis was striking, with a marked elevation in all major lymphoid subsets, including the non-conventional double-negative (DN) T cells (TCRβ+ CD4– CD8– B220+ ) characteristic of Faslpr/lpr mice. Of note, the onset of autoimmunity was markedly accelerated in Mcl-1tg/lpr mice compared with lpr mice, and this was preceded by an increase in immunoglobulin (Ig)-producing cells and circulating autoantibodies. This degree of impact was surprising, given the relatively mild phenotype conferred by the vavP-Mcl-1 transgene by itself: a two- to threefold elevation of peripheral B and T cells, no significant increase in the non-conventional DN T-cell population and no autoimmune disease. Comparison of the phenotype with that of other susceptible mice suggests that the development of autoimmune disease in Mcl-1tg/lpr mice may be influenced not only by Ig-producing cells but also other haemopoietic cell types

    Epithelial-to-mesenchymal transition supports ovarian carcinosarcoma tumorigenesis and confers sensitivity to microtubule-targeting with eribulin

    Get PDF
    Ovarian carcinosarcoma (OCS) is an aggressive and rare tumour type with limited treatment options. OCS is hypothesised to develop via the combination theory, with a single progenitor resulting in carcinomatous and sarcomatous components, or alternatively via the conversion theory, with the sarcomatous component developing from the carcinomatous component through epithelial-to-mesenchymal transition (EMT). In this study, we analysed DNA variants from isolated carcinoma and sarcoma components to show that OCS from 18 women is monoclonal. RNA sequencing indicated the carcinoma components were more mesenchymal when compared with pure epithelial ovarian carcinomas, supporting the conversion theory and suggesting that EMT is important in the formation of these tumours. Preclinical OCS models were used to test the efficacy of microtubule-targeting drugs, including eribulin, which has previously been shown to reverse EMT characteristics in breast cancers and induce differentiation in sarcomas. Vinorelbine and eribulin more effectively inhibited OCS growth than standard-of-care platinum-based chemotherapy, and treatment with eribulin reduced mesenchymal characteristics and N-MYC expression in OCS patient-derived xenografts (PDX). Eribulin treatment resulted in an accumulation of intracellular cholesterol in OCS cells, which triggered a down-regulation of the mevalonate pathway and prevented further cholesterol biosynthesis. Finally, eribulin increased expression of genes related to immune activation and increased the intratumoral accumulation of CD8+ T cells, supporting exploration of immunotherapy combinations in the clinic. Together, these data indicate EMT plays a key role in OCS tumourigenesis and support the conversion theory for OCS histogenesis. Targeting EMT using eribulin could help improve OCS patient outcomes

    Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains

    No full text
    Loss of the tumour suppressor BRCA1 results in profound chromosomal instability. The fundamental defect underlying this catastrophic phenotype is not yet known. In vivo, BRCA1 forms a heterodimeric complex with BARD1. Both proteins contain an N-terminal zinc RING-finger domain which confers E3 ubiquitin ligase activity. We have isolated full-length human BRCA1/BARD1 complex and have shown that it has a dual E3 ubiquitin ligase activity. First, it mediates the monoubiquitylation of nucleosome core histones in vitro, including the variant histone H2AX that co-localizes with BRCA1 at sites of DNA damage. Secondly, BRCA1/BARD1 catalyses the formation of multiple polyubiquitin chains on itself. Remarkably, this auto-polyubiquitylation potentiates the E3 ubiquitin ligase activity of the BRCA1/BARD1 complex >20-fold. Even though BRCA1 has been reported to associate with a C-terminal ubiquitin hydrolase, BAP1, this enzyme does not appear to function in the deubiquitylation of the BRCA1/BARD1 complex

    Loss of a Single Mcl-1 Allele Inhibits MYC-Driven Lymphomagenesis by Sensitizing Pro-B Cells to Apoptosis

    Get PDF
    MCL-1 is critical for progenitor cell survival during emergency hematopoiesis, but its role in sustaining cells undergoing transformation and in lymphomagenesis is only poorly understood. We investigated the importance of MCL-1 in the survival of B lymphoid progenitors undergoing MYC-driven transformation and its functional interactions with pro-apoptotic BIM and PUMA and the tumor suppressor p53 in lymphoma development. Loss of one Mcl-1 allele almost abrogated MYC-driven-lymphoma development owing to a reduction in lymphoma initiating pre-B cells. Although loss of the p53 target PUMA had minor impact, loss of one p53 allele substantially accelerated lymphoma development when MCL-1 was limiting, most likely because p53 loss also causes defects in non-apoptotic tumor suppressive processes. Remarkably, loss of BIM restored the survival of lymphoma initiating cells and rate of tumor development. Thus, MCL-1 has a major role in lymphoma initiating pro-B cells to oppose BIM, which is upregulated in response to oncogenic stress
    corecore