3,175 research outputs found

    Administering Justice - To Creatures Big and Small

    Get PDF

    Sensitivity studies for r-process nucleosynthesis in three astrophysical scenarios

    Full text link
    In rapid neutron capture, or r-process, nucleosynthesis, heavy elements are built up via a sequence of neutron captures and beta decays that involves thousands of nuclei far from stability. Though we understand the basics of how the r-process proceeds, its astrophysical site is still not conclusively known. The nuclear network simulations we use to test potential astrophysical scenarios require nuclear physics data (masses, beta decay lifetimes, neutron capture rates, fission probabilities) for all of the nuclei on the neutron-rich side of the nuclear chart, from the valley of stability to the neutron drip line. Here we discuss recent sensitivity studies that aim to determine which individual pieces of nuclear data are the most crucial for r-process calculations. We consider three types of astrophysical scenarios: a traditional hot r-process, a cold r-process in which the temperature and density drop rapidly, and a neutron star merger trajectory.Comment: 8 pages, 4 figures, submitted to the Proceedings of the International Nuclear Physics Conference (INPC) 201

    Constrained Rough Paths

    No full text

    Sn-modification of Pt7/alumina model catalysts: Suppression of carbon deposition and enhanced thermal stability.

    Get PDF
    An atomic layer deposition process is used to modify size-selected Pt7/alumina model catalysts by Sn addition, both before and after Pt7 cluster deposition. Surface science methods are used to probe the effects of Sn-modification on the electronic properties, reactivity, and morphology of the clusters. Sn addition, either before or after cluster deposition, is found to strongly affect the binding properties of a model alkene, ethylene, changing the number and type of binding sites, and suppressing decomposition leading to carbon deposition and poisoning of the catalyst. Density functional theory on a model system, Pt4Sn3/alumina, shows that the Sn and Pt atoms are mixed, forming alloy clusters with substantial electron transfer from Sn to Pt. The presence of Sn also makes all the thermally accessible structures closed shell, such that ethylene binds only by π-bonding to a single Pt atom. The Sn-modified catalysts are quite stable in repeated ethylene temperature programmed reaction experiments, suggesting that the presence of Sn also reduces the tendency of the sub-nano-clusters to undergo thermal sintering

    A combinatorial approach to geometric rough paths and their controlled paths

    Get PDF
    We develop the structure theory for transformations of weakly geometric rough paths of bounded 1<p1 < p-variation and their controlled paths. Our approach differs from existing approaches as it does not rely on smooth approximations. We derive an explicit combinatorial expression for the rough path lift of a controlled path, and use it to obtain fundamental identities such as the associativity of the rough integral, the adjunction between pushforwards and pullbacks, and a change of variables formula for rough differential equations (RDEs). As applications we define rough paths, rough integration and RDEs on manifolds, extending the results of [CDL15] to the case of arbitrary pp

    Bankruptcy

    Get PDF
    • …
    corecore