296 research outputs found

    The Influence of Hospitality Leaders’ Relational Transparency on Followers’ Trust and Deviance Behaviors: Mediating Role of Behavioral Integrity

    Full text link
    This paper investigates the effect of leader\u27s relational transparency on follower organizational deviance through followers’ perception of leader\u27s behavioral integrity and their trust in leader. Multi-level modeling results from a multisource survey-based field-study with 24 hospitality student project teams (N = 149) show that behavioral integrity mediates the relationship between leader\u27s relational transparency and follower\u27s trust in leader. Furthermore, multi-level path analysis suggests that leader\u27s relational transparency, a team-level construct, exerts a cross-level effect on follower\u27s organizational deviance through the mediating roles of behavioral integrity and follower\u27s trust in leader. The study has yielded theoretical and practical implications that are useful for hospitality leaders. © 201

    When Do Abusive Leaders Experience Guilt?

    Full text link
    Purpose: Drawing from the appraisal theory, this paper aims to examine the conditions under which abusive leaders experience guilt and suggests that guilt motivates leaders to help followers. Design/methodology/approach: A scenario study with a sample of 285 hospitality supervisors was used to test the theoretical model. Path analyses were conducted to test the three-way-moderated mediation model. Findings: Results show a three-way interaction among enacted abuse, managerial abuse and agreeableness on the guilt: leaders are more likely to experience guilt over their enacted abusive supervision when they do not perceive their direct manager as abusive and when they are agreeable. Moreover, guilt mediates the relationship between enacted abuse and a leader’s intention to help their followers. Research limitations/implications: This study shows that abusive supervisors pay an emotional cost for their enacted abuse (in terms of guilt). Practical implications: Hospitality organization should assign non-abusive mentors to leaders, especially agreeable ones, to detect and reduce abusive supervision. Originality/value: First, this study addressed the lack of research on the effect of abusive supervision on the abusers by studying the conditions under which abusive leaders experience guilt. Second, this study shows that because of guilt, abusive leaders have a higher intention to help their followers. It explains why abusive leaders can be helpful

    Smart Plastic Antibody Material (SPAM) tailored on disposable screen printed electrodes for protein recognition: application to Myoglobin detection

    Get PDF
    This work introduces two major changes to the conventional protocol for designing plastic antibodies: (i) the imprinted sites were created with charged monomers while the surrounding environment was tailored using neutral material; and (ii) the protein was removed from its imprinted site by means of a protease, aiming at preserving the polymeric network of the plastic antibody. To our knowledge, these approaches were never presented before and the resulting material was named here as smart plastic antibody material (SPAM). As proof of concept, SPAM was tailored on top of disposable gold-screen printed electrodes (Au-SPE), following a bottom-up approach, for targeting myoglobin (Myo) in a point-of-care context. The existence of imprinted sites was checked by comparing a SPAM modified surface to a negative control, consisting of similar material where the template was omitted from the procedure and called non-imprinted materials (NIMs). All stages of the creation of the SPAM and NIM on the Au layer were followed by both electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). AFM imaging was also performed to characterize the topography of the surface. There are two major reasons supporting the fact that plastic antibodies were effectively designed by the above approach: (i) they were visualized for the first time by AFM, being present only in the SPAM network; and (ii) only the SPAM material was able to rebind to the target protein and produce a linear electrical response against EIS and square wave voltammetry (SWV) assays, with NIMs showing a similar-to-random behavior. The SPAM/Au-SPE devices displayed linear responses to Myo in EIS and SWV assays down to 3.5 ÎŒg/mL and 0.58 ÎŒg/mL, respectively, with detection limits of 1.5 and 0.28 ÎŒg/mL. SPAM materials also showed negligible interference from troponin T (TnT), bovine serum albumin (BSA) and urea under SWV assays, showing promising results for point-of-care applications when applied to spiked biological fluids

    Protein-responsive polymers for point-of-care detection of cardiac biomarker

    Get PDF
    This work describes a novel use for the polymeric film, poly(o-aminophenol) (PAP) that was made responsive to a specific protein. This was achieved through templated electropolymerization of aminophenol (AP) in the presence of protein. The procedure involved adsorbing protein on the electrode surface and thereafter electroploymerizing the aminophenol. Proteins embedded at the outer surface of the polymeric film were digested by proteinase K and then washed away thereby creating vacant sites. The capacity of the template film to specifically rebind protein was tested with myoglobin (Myo), a cardiac biomarker for ischemia. The films acted as biomimetic artificial antibodies and were produced on a gold (Au) screen printed electrode (SPE), as a step towards disposable sensors to enable point-of-care applications. Raman spectroscopy was used to follow the surface modification of the Au-SPE. The ability of the material to rebind Myo was measured by electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). The devices displayed linear responses to Myo in EIS and SWV assays down to 4.0 and 3.5 ÎŒg/mL, respectively, with detection limits of 1.5 and 0.8 ÎŒg/mL. Good selectivity was observed in the presence of troponin T (TnT) and creatine kinase (CKMB) in SWV assays, and accurate results were obtained in applications to spiked serum. The sensor described in this work is a potential tool for screening Myo in point-of-care due to the simplicity of fabrication, disposability, short time response, low cost, good sensitivity and selectivity

    Polyfunctionalised nanoparticles bearing robust gadolinium surface units for high relaxivity performance in MRI

    Get PDF
    The first example of an octadentate gadolinium unit based on DO3A (hydration number q = 1) with a dithiocarbamate tether has been designed and attached to the surface of gold nanoparticles (around 4.4 nm in diameter). In addition to the superior robustness of this attachment, the restricted rotation of the Gd complex on the nanoparticle surface leads to a dramatic increase in relaxivity (r1) from 4.0 mM‐1 s‐1 in unbound form to 34.3 mM‐1 s‐1 (at 10 MHz, 37 °C) and 22 ± 2 mM‐1s‐1 (at 63.87 MHz, 25 °C) when immobilised on the surface. The ‘one‐pot’ synthetic route provides a straightforward and versatile way of preparing a range of multifunctional gold nanoparticles. The incorporation of additional surface units improving biocompatibility (PEG and thioglucose units) and targeting (folic acid) lead to little detrimental effect on the high relaxivity observed for these non‐toxic multifunctional materials. In addition to the passive targeting attributed to gold nanoparticles, the inclusion of a unit capable of targeting the folate receptors overexpressed by cancer cells, such as HeLa cells, illustrates the potential of these assemblies

    Strep-tag ii mutant maltose-binding protein for reagentless fluorescence sensing

    Get PDF
    Maltose-binding protein (MBP) is a periplasmic binding protein found in Gram negative bacteria. MBP is involved in maltose transport and bacterial chemotaxis; it binds to maltose and maltodextrins comprising α(1-4)-glucosidically linked linear glucose polymers and α(1-4)-glucosidically linked cyclodextrins. Upon ligand binding, MBP changes its conformation from an open to a closed form. This molecular recognition-transducing a ligand-binding event into a physical one-renders MBP an ideal candidate for biosensor development. Here, we describe the construction of a Strep-tag II mutant MBP for reagentless fluorescence sensing. malE, which encodes MBP, was amplified. A cysteine residue was introduced by site-directed mutagenesis to ensure a single label attachment at a specific site with a thiol-specific fluorescent probe. An environmentally sensitive fluorophore (IANBD amide) was covalently attached to the introduced thiol group and analysed by fluorescence sensing. The tagged mutant MBP (D95C) was purified (molecular size, ∌42 kDa). The fluorescence measurements of the IANBD-labelled Strep-tag II-D95C in the solution phase showed an appreciable change in fluorescence intensity (dissociation constant, 7.6±1.75 ÎŒM). Our mutant MBP retains maltose-binding activity and is suitable for reagentless fluorescence sensin

    Gold nanorod reshaping in vitro and in vivo using a continuous wave laser

    Get PDF
    Funding for this project was provided by ERC grant 242991 (D. Elson), and by Cancer Research UK via the CRUK Cancer Imaging Centre at the Institute of Cancer Research (ICR) to J. Bamber. We acknowledge an ERC starting grant (project number 257182) to A. Porter, and BRC funding (project number P46143) to A. Porter, D. Elson and P. Ruenraroengsak. We acknowledge NHS funding to the NIHR Biomedical Research Centre at The Royal Marsden (J. Bamber) and at Imperial College London, as well as support provided by the Cancer Research UK Imperial Centre.Gold nanorods (GNRs) are increasingly being investigated for cancer theranostics as they possess features which lend themselves in equal measures as contrast agents and catalysts for photothermal therapy. Their optical absorption spectral peak wavelength is determined by their size and shape. Photothermal therapy using GNRs is typically established using near infrared light as this allows sufficient penetration into the tumour matrix. Continuous wave (CW) lasers are the most commonly applied source of near infrared irradiation on GNRs for tumour photothermal therapy. It is perceived that large tumours may require fractionated or prolonged irradiation. However the true efficacy of repeated or protracted CW irradiation on tumour sites using the original sample of GNRs remains unclear. In this study spectroscopy and transmission electron microscopy are used to demonstrate that GNRs reshape both in vitro and in vivo after CW irradiation, which reduces their absorption efficiency. These changes were sustained throughout and beyond the initial period of irradiation, resulting from a spectral blue-shift and a considerable diminution in the absorption peak of GNRs. Solid subcutaneous tumours in immunodeficient BALB/c mice were subjected to GNRs and analysed with electron microscopy pre- and post-CW laser irradiation. This phenomenon of thermally induced GNR reshaping can occur at relatively low bulk temperatures, well below the bulk melting point of gold. Photoacoustic monitoring of GNR reshaping is also evaluated as a potential clinical aid to determine GNR absorption and reshaping during photothermal therapy. Aggregation of particles was coincidentally observed following CW irradiation, which would further diminish the subsequent optical absorption capacity of irradiated GNRs. It is thus established that sequential or prolonged applications of CW laser will not confer any additional photothermal effect on tumours due to significant attenuations in the peak optical absorption properties of GNRs following primary laser irradiation.Publisher PDFPeer reviewe

    Inhibition of Striatal Soluble Guanylyl Cyclase-cGMP Signaling Reverses Basal Ganglia Dysfunction and Akinesia in Experimental Parkinsonism

    Get PDF
    There is clearly a necessity to identify novel non-dopaminergic mechanisms as new therapeutic targets for Parkinson's disease (PD). Among these, the soluble guanylyl cyclase (sGC)-cGMP signaling cascade is emerging as a promising candidate for second messenger-based therapies for the amelioration of PD symptoms. In the present study, we examined the utility of the selective sGC inhibitor 1H-[1], [2], [4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) for reversing basal ganglia dysfunction and akinesia in animal models of PD.The utility of the selective sGC inhibitor ODQ for reversing biochemical, electrophysiological, histochemical, and behavioral correlates of experimental PD was performed in 6-OHDA-lesioned rats and mice chronically treated with MPTP.We found that one systemic administration of ODQ is sufficient to reverse the characteristic elevations in striatal cGMP levels, striatal output neuron activity, and metabolic activity in the subthalamic nucleus observed in 6-OHDA-lesioned rats. The latter outcome was reproduced after intrastriatal infusion of ODQ. Systemic administration of ODQ was also effective in improving deficits in forelimb akinesia induced by 6-OHDA and MPTP.Pharmacological inhibition of the sGC-cGMP signaling pathway is a promising non-dopaminergic treatment strategy for restoring basal ganglia dysfunction and attenuating motor symptoms associated with PD
    • 

    corecore