388 research outputs found

    Achievements and Perspectives in the Breeding of Temperate Grasses and Legumes

    Get PDF
    This paper will focus on a historical perspective on cool season forage production, plant breeding methods for cool season forages, major cool season forage selection criteria, some examples of significant achievements, and a future perspective. Topics similar to ours have been discussed at recent previous meeting of this Congress (Humphreys, 1997; Van Wijk et al., 1993); however, we will strive to avoid “plowing the same ground twice”. In an attempt to prevent duplication of content with other sections of this Congress, only limited attention will be given to genetic resource acquisition and conservation. Additionally, alfalfa (Medicago sativa L.), one of the primary temperate forage legumes, will generally not be discussed, since a full paper by Dr. Bouton will be presented in another session

    Marker-Assisted Selection for Fibre Concentration in Smooth Bromegrass

    Get PDF
    The concentration of neutral detergent fibre is the best single laboratory predictor of voluntary intake potential in forage crops. However, the assay of thousands of plant samples for NDF selection in a breeding program requires a large amount of labour and time, potentially increasing cycle time and reducing the rate of progress. A previous study (Diaby and Casler, 2005) identified 16 random amplified polymorphic DNA (RAPD) markers that were strongly associated with NDF concentration in one or more of four smooth bromegrass (Bromus inermis Leyss) populations. The objective of this study was to validate these associations by implementing marker-assisted selection for these 16 RAPD markers

    Forage Yield and Economic Losses Associated with the Brown-Midrib Trait in Sudangrass

    Get PDF
    Brown-midrib genes increase digestibility due to reduced lignification in sudangrass, Sorghum bicolor subsp. drummondii (Nees ex Steud.) de Wet & Harlan. Brown-midrib lines are known to be low in forage yield potential, but this reduction in forage yield has not been previously quantified. The objectives of this study were to quantify the increase in forage quality and decrease in forage yield and to provide an economic assessment of this dichotomy. Piper and Greenleaf (normal leaves) were compared with their brown-midrib counterparts and four highly selected brown-midrib (FG) lines at two locations for 2 yr. Brown-midrib lines averaged 9.0% lower in lignin and 7.2% higher in in vitro fiber digestibility than normal lines. The reduction in first-harvest forage yield was highly variable across germplasms and locations. Greenleaf and the FG lines showed severe forage yield reductions in Wisconsin but not in Nebraska, whereas forage yield of Piper was uniformly reduced across locations. Reduced tillering and plant height of the brown-midrib plants appeared to be mechanisms for reducing forage yield. The brown-midrib phenotype of sudangrass, caused by the homozygous condition of the bmr-6 allele, appears to be environmentally sensitive, particularly limiting production in cooler and shorter growing seasons. Conversely, uniform reductions in second-harvest forage yield suggested a fundamental limitation to regrowth potential associated with the brown-midrib phenotype. Predicted net returns from feeding sudangrass hay were similar for first-harvest normal and brown-midrib lines, but severely depressed for brown-midrib lines in second harvest, due to the severe yield reductions

    Genetic modification of lignin concentration affects fitness of perennial herbaceous plants

    Get PDF
    Populations of four perennial herbaceous species that were genetically modified for altered lignin content (or associated forage digestibility) by conventional plant breeding were evaluated for two agricultural fitness traits, plant survival and plant biomass, in three Northcentral USA environments for more than 4 years. Reduced lignin concentration or increased digestibility resulted in increased winter mortality in two of four species and reduced biomass in one species. Results from other experiment indicate that these apparent genetic correlations may be ephemeral, suggesting that selection for fitness can be successful within high-digestibility or low-lignin germplasm. Results indicate that perennial plants genetically engineered with altered lignin concentration or composition for use in livestock, pulp and paper, or bioenergy production should be evaluated for fitness in field environments prior to use in agriculture

    Forage Yield and Economic Losses Associated with the Brown-Midrib Trait in Sudangrass

    Get PDF
    Brown-midrib genes increase digestibility due to reduced lignification in sudangrass, Sorghum bicolor subsp. drummondii (Nees ex Steud.) de Wet & Harlan. Brown-midrib lines are known to be low in forage yield potential, but this reduction in forage yield has not been previously quantified. The objectives of this study were to quantify the increase in forage quality and decrease in forage yield and to provide an economic assessment of this dichotomy. Piper and Greenleaf (normal leaves) were compared with their brown-midrib counterparts and four highly selected brown-midrib (FG) lines at two locations for 2 yr. Brown-midrib lines averaged 9.0% lower in lignin and 7.2% higher in in vitro fiber digestibility than normal lines. The reduction in first-harvest forage yield was highly variable across germplasms and locations. Greenleaf and the FG lines showed severe forage yield reductions in Wisconsin but not in Nebraska, whereas forage yield of Piper was uniformly reduced across locations. Reduced tillering and plant height of the brown-midrib plants appeared to be mechanisms for reducing forage yield. The brown-midrib phenotype of sudangrass, caused by the homozygous condition of the bmr-6 allele, appears to be environmentally sensitive, particularly limiting production in cooler and shorter growing seasons. Conversely, uniform reductions in second-harvest forage yield suggested a fundamental limitation to regrowth potential associated with the brown-midrib phenotype. Predicted net returns from feeding sudangrass hay were similar for first-harvest normal and brown-midrib lines, but severely depressed for brown-midrib lines in second harvest, due to the severe yield reductions

    Registration of WS4U and WS8U Switchgrass Germplasms

    Get PDF
    Two upland switchgrass (Panicum virgatum L.) germplasm pools, WS4U (Reg. no. GP-92, PI 639191) and WS8U (Reg. no. GP-93, PI 639192), were released cooperatively on 18 July 2002 by the University of Wisconsin, University of Nebraska, and the USDA-ARS, Lincoln, NE. These germplasms were developed as source material to be used in developing cultivars with increased biomass yield and geographic adaptation for bioenergy production in USDA hardiness zones 3 and 4 in the northern USA and similar geographic regions of southern Canada. WS4U is a tetraploid (2n = 4x = 36) and WS8U is an octoploid (2n = 8x = 72)

    Germplasm and Cultivar Development

    Get PDF
    Cool-season forage grasses have evolved, and continue to evolve, in natural ecosystems subject to environmental factors both in the presence and absence of human influences. The literature often lacks facts describing the evolution and domestication of forage grasses. Furthermore, the literature on this subject mainly deals with evolution of species in the broad scope, i.e., on a scale of hundreds of thousands or millions or years. Thus, some of our conclusions are necessarily speculative and are highly subject to the nature of the research that has been reported. We describe the forces of selection that act upon cool-season forage grasses and attempt to place each in historical perspective and in relation to each other. Because most economically important cool-season forage grasses are perennial, our principal focus will be on perennial species. There has been very little effort to quantify economic values of selection criteria or to empirically compare different breeding procedures in cool-season forage grasses. We attempt to summarize and compare some of the more important and thoroughly reported approaches used since the advent of formal breeding strategies in the late nineteenth and early twentieth centuries. These selection criteria and breeding procedures are as varied as the individual researchers who developed them. Examples are cited to illustrate principles and phenomena of historical or practical importance. More details of the agriculturally important species are discussed in the later chapters of this book. Space limitations prevent us from developing a thorough review, but we cite earlier reviews that thoroughly cover the first few decades of formal cool-season forage grass breeding. We also have summarized the limited amount of research on cool-season forage grasses where attempts have been made to use new technologies for hybridization, tissue culture, and genetic markers. Many of these techniques were first developed using other species and later adapted to cool-season forage grasses. Many are still undergoing rapid development and modification to allow more efficient use in breeding programs. Together they have had little practical impact on cool-season forage grass cultivars, but appear to offer considerable promise for creating new genetic variability and more efficient breeding procedures

    Germplasm and Cultivar Development

    Get PDF
    Cool-season forage grasses have evolved, and continue to evolve, in natural ecosystems subject to environmental factors both in the presence and absence of human influences. The literature often lacks facts describing the evolution and domestication of forage grasses. Furthermore, the literature on this subject mainly deals with evolution of species in the broad scope, i.e., on a scale of hundreds of thousands or millions or years. Thus, some of our conclusions are necessarily speculative and are highly subject to the nature of the research that has been reported. We describe the forces of selection that act upon cool-season forage grasses and attempt to place each in historical perspective and in relation to each other. Because most economically important cool-season forage grasses are perennial, our principal focus will be on perennial species. There has been very little effort to quantify economic values of selection criteria or to empirically compare different breeding procedures in cool-season forage grasses. We attempt to summarize and compare some of the more important and thoroughly reported approaches used since the advent of formal breeding strategies in the late nineteenth and early twentieth centuries. These selection criteria and breeding procedures are as varied as the individual researchers who developed them. Examples are cited to illustrate principles and phenomena of historical or practical importance. More details of the agriculturally important species are discussed in the later chapters of this book. Space limitations prevent us from developing a thorough review, but we cite earlier reviews that thoroughly cover the first few decades of formal cool-season forage grass breeding. We also have summarized the limited amount of research on cool-season forage grasses where attempts have been made to use new technologies for hybridization, tissue culture, and genetic markers. Many of these techniques were first developed using other species and later adapted to cool-season forage grasses. Many are still undergoing rapid development and modification to allow more efficient use in breeding programs. Together they have had little practical impact on cool-season forage grass cultivars, but appear to offer considerable promise for creating new genetic variability and more efficient breeding procedures

    Latitudinal Adaptation of Switchgrass Populations

    Get PDF
    Switchgrass (Panicum virgatum L.) is a widely adapted warm-season perennial that has considerable potential as a biofuel crop. Evolutionary processes and environmental factors have combined to create considerable ecotypic differentiation in switchgrass. The objective of this study was to determine the nature of population x location interaction for switchgrass, quantifying potential differences in latitudinal adaptation of switchgrass populations. Twenty populations were evaluated for biofuel and agronomic traits for 2 yr at five locations ranging from 36 to 46° N lat. Biomass yield, survival, and plant height had considerable population x location interaction, much of which (53-65%) could be attributed to the linear effect of latitude and to germplasm groups (Northern Upland, Southern Upland, Northern Lowland, and Southern Lowland). Differences among populations were consistent across locations for maturity, dry matter, and lodging. Increasingly later maturity and the more rapid stem elongation rate of more southern-origin ecotypes (mainly lowland cytotypes) resulted in high biomass yield potential, reduced dry matter concentration, and longer retention of photosynthetically active tissue at more southern locations. Conversely, increasing cold tolerance of more northern-origin ecotypes (mainly upland cytotypes) resulted in higher survival, stand longevity, and sustained biomass yields at more northern locations, allowing switchgrass to thrive at cold, northern latitudes. Although cytotype explained much of the variation among populations and the population x location interaction, ecotypic differentiation within cytotypes accounted for considerable variation in adaption of switchgrass populations
    • …
    corecore