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Cool-season forage grasses have evolved, and continue to evolve, in natural eco
systems subject to environmental factors both in the presence and absence of 
human influences. The literature often lacks facts describing the evolution and 
domestication of forage grasses. Furthermore, the literature on this subject mainly 
deals with evolution of species in the broad scope, i.e., on a scale of hundreds of 
thousands or millions or years. Thus, some of our conclusions are necessarily 
speculative and are highly subject to the nature of the research that has been 
reported. We describe the forces of selection that act upon cool-season forage 
grasses and attempt to place each in historical perspective and in relation to each 
other. Because most economically important cool-season forage grasses are pe
rennial, our principal focus will be on perennial species. 

There has been very little effort to quantify economic values of selection 
criteria or to empirically compare different breeding procedures in cool-season 
forage grasses. We attempt to summarize and compare some of the more impor
tant and thoroughly reported approaches used since the advent of formal breed
ing strategies in the late nineteenth and early twentieth centuries. These selection 
criteria and breeding procedures are as varied as the individual researchers who 
developed them. Examples are cited to illustrate principles and phenomena of 
historical or practical importance. More details of the agriculturally important 
species are discussed in the later chapters of this book. Space limitations prevent 

1 Common names for plants have been used throughout the chapter. Refer to the appendix for 
the scientific name. 

Copyright © 1996 American Society of Agronomy, Crop Science Society of America, Soil Sci
ence Society of America, 677 S. Segoe Rd., Madison, WI 53711, USA. Cool-Season Forage Grasses, 
Agronomy Monograph no. 34. 
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us from developing a thorough review, but we cite earlier reviews that thoroughly 
cover the first few decades of formal cool-season forage grass breeding. 

We also have summarized the limited amount of research on cool-season 
forage grasses where attempts have been made to use new technologies for hy
bridization, tissue culture, and genetic markers. Many of these techniques were 
first developed using other species and later adapted to cool-season forage grasses. 
Many are still undergoing rapid development and modification to allow more 
efficient use in breeding programs. Together they have had little practical impact 
on cool-season forage grass cultivars, but appear to offer considerable promise 
for creating new genetic variability and more efficient breeding procedures. 

HISTORICAL DEVELOPMENT OF COOL-SEASON 
GRASS BREEDING 

Darwin (1868, 1875) described three types of selective forces that may act 
to modify populations of organisms. Natural selection is the process whereby 
those individuals best fitted to a particular environment, a range of fluctuating 
environments, or a human-imposed management system have the greatest sur
vival rate or contribute the greatest numbers of viable progeny to succeeding 
generations. Second, unconscious selection is the process by which humans save 
the phenotypically most valuable or desirable individuals, or their seed, and de
stroy or ignore the less valuable or desirable individuals. This process allows 
humans to facilitate genetic changes insofar as genetic variation allows, without 
the need to define or predetermine the selection criteria or potential correlated 
traits. Finally, methodical selection comprises the forces that are applied by hu
mans in their systematic attempts to create predetermined changes to popula
tions. All three of these types of forces have acted and continue to act in various 
ways, sometimes in concert, sometimes in disharmony, to create the world's pool 
of cool-season forage grass germplasms. 

Natural Selection 

The forces of natural selection which may affect the genetic and pheno
typic composition offorage grass populations can be categorized into two groups: 
genetic interactions with the physical environment (abiotic) and genetic interac
tions with other biological organisms (biotic). In reality, these two factors affect
ing the genetic response to natural selection are often inseparable. Genetic shifts 
associated with grazing, for example, may be strongly influenced by levels of 
soil moisture and/or soil fertility, or by soil type. Nevertheless, review of the 
literature suggests that natural selective forces acting upon cool-season forage 
grasses can be categorized into one of the above groups. In this review, we at
tempt to summarize the forces that seem to have been most important in the evo
lution of cool-season forage grasses since the beginnings of agriculture, and to 
show prominent examples of physical environment characteristics and biologi
cal organisms that affect the genetic composition of these grasses. 
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Natural selection over the course of 50 or more years under an infrequent 
cutting management led to dramatic population differentiation in sweet vemalgrass 
(Snaydon, 1970). Evolution in these meadows was strongly mediated by artifi
cially created differences in the physical environment, mainly soil pH and fertil
ity. Soil pH strongly influenced (r = 0.95) the ability of evolved populations to 
respond to liming, populations derived form limed plots grew more rapidly on 
calcareous soils (pH 8.2) and populations derived from un limed plots grew more 
rapidly on acid soils (pH 4.3-4.6). Surviving plants from unlimed plots also were 
more tolerant of high Al concentration (Fig. 14-1) and more responsive to in
creasing levels ofCa in sand culture (Davies & Snaydon, 1973a) than were plants 
from un limed plots. Similarly, surviving plants form high-P soils were more re
sponsive to increasing levels of P in sand culture than were plants from low-P 
soils (Davies & Snaydon, 1974). These changes appear to represent adaptive ge
netic shifts to divergent physical environments (Snaydon & Davies, 1972; 
Snaydon, 1978). Orchardgrass, perennial ryegrass, and colonial bentgrass are 
amenable to similar evolutionary forces (Jowett, 1959; Crossley & Bradshaw, 
1968). Adaptive genetic shifts also may occur in relatively few years during seed 
multiplication of cultivars on soils with extreme pH levels (Crossley & Bradshaw, 
1968). 

Numerous types of biological organisms provide natural selective forces 
that act upon cool-season forage grasses. Perhaps the most dramatic, most stud
ied, and most historically important illustration is the effect of grazing on the 
genetic composition of pastures. Several authors have reviewed literature and 
described the effects of grazers and grazing management on grassland produc
tivity and species composition (Watkin & Clements, 1978; McNaughton et aI., 
1982; Coleman et aI., 1989). Forage grasses have most certainly coevolved with 
grazers (Stebbins, 1981) and have necessarily evolved traits that allow them to 
survive under grazing pressure. Mixtures of perennial ryegrass and Italian ryegrass 
invariably show rapid «2 yr) genetic shifts toward the perennial ryegrass pheno
type when subjected to grazing pressure, natural selective effects that grow stron
ger with increased intensity of grazing (Brougham et aI., 1960; Charles, 1964; 
Brougham & Harris, 1967). Selection for survival in perennial ryegrass during 6 
yr of grazing led to a 7% increase in forage yield for' S23' survivors and a 10% 
increase in 'S24' survivors compared to their respective original populations 
(Charles, 1972). Perennial ryegrass plants adapted to grazing pressure are gener
ally prostrate in growth habit, late in maturity, and have a high capacity for tillering 
(Breese, 1983). Perennial ryegrass appears to be specifically adapted to survive 
in association with grazers (Beddows, 1953; Breese, 1983) and is rarely found in 
natural ecosystems without grazing pressure (Davies et aI., 1973). Breese (1983) 
suggested that the evolution and migration of perennial ryegrass may be linked 
with the evolution and development of ruminant livestock farming. Both peren
nial ryegrass and ruminant livestock farming likely have their origins in the Medi
terranean basin (Terrell, 1968; Harlan, 1975). 

Populations of other cool-season forage grass species appear to be consid
erably less responsive than those ofthe ryegrasses to the selective effects of graz
ers. In a 50:50 mixture of early and late-flowering orchardgrass cultivars, there 
were no differences in the frequency of early flowering plants after 11 mo of 
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frequent grazing, infrequent grazing, or infrequent clipping (Charles, 1961). 
Orchardgrass plants that survived 4 yr of grazing differed only slightly, for 15 
traits, from unselected plants (Tsurumi et aI., 1985). However, natural selection 
induced genotype x environment (G x E) interactions; the five cultivars had dif
ferent responses to grazing pressure and their phenotypic changes were a func
tion of the site upon which they were grazed (Tsurumi et aI., 1985). Van Dijk 
(1955) selected random timothy plants from Dutch pastures with a range of graz
ing managements. Plants surviving from 1 to 20 yr of grazing were nearly identi
cal in the distribution of maturity and growth habit classes to commercial hay
type strains of timothy (Van Dijk, 1955). Plants surviving ~ 1 yr of grazing had 
approximately twice as high a frequency of prostrate or semi-prostrate plants 
and 19 times the frequency of medium- to late-flowering plants as as those from 
pastures <21 yr old. There were similar, but considerably smaller, trends for 
orchardgrass (Van Dijk, 1955). Furthermore, there were no differences in mor
phology of timothy and orchardgrass plants collected from dedicated pastures, 
hay fields, or combination hay/pasture fields, suggesting that evolution of late
flowering, prostrate types of timothy and orchardgrass in the oldest fields was 
not a response to grazing pressure per se, but a long-term adaptation to regular 
defoliation, either by the animal or machine. 

Because of their high capacity for vegetative reproduction, grazing- or clip
ping-tolerant genotypes of perennial grasses have the potential to live indefi
nitely, despite the stresses of frequent defoliation. The largest plants in a popula
tion of crested wheatgrass had the lowest percentages of defoliation by grazing 
animals (Norton & Johnson, 1981), suggesting their potential to dominate the 
sward. A natural population of German velvetgrass appeared to consist of only 
four genotypes, one of which had ramets covering a distance of 800 m (Harberd, 
1961), while a genotype of sheep fescue was estimated to be at least 1000 yr old 
(Harberd, 1962). Owen and Wiegert (1981) suggested that large, long-lived, rarnet
forrn ing grasses have evolved in response to grazing and cannot survive without 
grazing pressure. Indeed, some grasses that have evolved in long-term grass
lands cannot survive when grazing pressure is removed (McNaughton, 1979). 
Furthermore, there is evidence that ruminant saliva may stimulate the growth of 
grasses adapted to natural pasture or rangeland ecosystems (see reviews by Fily 
et aI., 1991; Matches, 1992). 

All cool-season forage grasses contain lignin, silica, and phenolic com
pounds in quantities sufficient to limit intake by ruminant animals (Van Soest, 
1982). These compounds may act as a general defense mechanism for grasses to 
maintain fitness under the stresses of grazing pressure (McNaughton, 1979; Owen 
& Wiegert, 1981). Many of these compounds also are genetically related to the 
nutritive value of grass herbage (Buxton & Casler, 1993). Considerable genetic 
variability exists within all cool-season forage grasses for many of these com
pounds, but there is no convincing evidence to date which suggests that grazing 
animals can select plants that are nutritionally better than other plants (Arnold, 
1981, 1987). Snaydon (1978) suggested that natural selection during grazing will 
select against and, perhaps eliminate, the more palatable genotypes. 

Palatability of cool-season forage grasses to ruminants is not related to fOJ
age nutritional value per se (Arnold, 1981), but is strongly influenced by specific 



418 CASLER ET AL. 

chemical defense mechanisms in some species (Levin, 1976). In reed canarygrass, 
the concentration of indole alkaloids has a strong negative effect on palatability 
to sheep (Ovis aries) and cattle (Bos taurus) (Simons & Marten, 1971; Marten, 
1973). Trichomes also may provide grasses with a specific defense mechanism 
against excessive grazing by ruminants (Levin, 1973). Orchardgrass genotypes 
are known to possess various degrees of siliceous dentation along their leaf blade 
margins (Van Dijk, 1959), but the role of these dentations in the evolution of 
orchardgrass has not been studied. Reed canarygrass genotypes without alka
loids and orchardgrass genotypes without silicious dentations have not yet been 
discovered or developed, and plants with extremely low levels of these traits are 
very rare (Marten, 1973; Van Dijk, 1959). Palatability of alkaloid-free reed 
canarygrass genotypes and siliceous dentation-free orchardgrass genotypes may 
be so high that these genotypes were unfit to reproduce in grazed grasslands, 
either sexually or asexually, and they were lost or reduced to extremely low fre
quencies in natural populations prior to the advent of germplasm collection and 
plant breeding. The physiological costs of these defense mechanisms are unknown 
in these two species. In white clover, cyanogenesis apparently carries a cost in 
reproductive fitness, compared to acyanogenic genotypes (Noitsakis & Jacquard, 
1992). 

Companion species in grasslands also may serve to regulate natural selec
tive forces. When planted in common nurseries, sweet vemalgrass plants selected 
at random from >50-yr-old plots containing tall vegetation were up to 50% taller 
and more upright in growth habit (Snaydon & Davies, 1972) and were more tol
erant of low levels of photosynthetically active radiation (Davies & Snaydon, 
1976) than plants selected at random from plots containing short vegetation. These 
changes occurred over distances of <1 m (Snaydon, 1973) and occurred despite 
the low proportion «10% of plot dry matter) of sweet vemalgrass in the plots 
(Snaydon, 1970). Perennial ryegrass, orchardgrass, sweet vemalgrass, and York
shire fog plants selected from plots differing in soil pH and fertility after 70 yr of 
natural selection were grown in all possible pairs of binary mixtures (Snaydon, 
1978). Populations selected from the same plot had higher yields and were more 
stable in mixtures with other species selected from the same plot than from spe
cies selected from different plots. Evans et al. (1989) also present evidence that 
populations of perennial ryegrass and white clover, that have coexisted for many 
years, have higher yield in binary mixture with each other than with other popu
lations. 

Finally, there is some evidence that fungi can influence genetic changes 
during natural selection. Natural selection in the presence of fungal parasites can 
lead to genetic shifts toward more resistant plants, but only when the environ
ment is favorable for disease development. Sweet vemalgrass plants that sur
vived more than 50 yr of natural selection in plots with tall vegetation were more 
resistant to yellow leaf rust than those that evolved in plots with short vegetation 
(Snaydon & Davies, 1972). Endophytic fungi have formed stable, long-term re
lationships with some forage grasses, such that infected plants tend to have greater 
vegetative vigor and tillering capacity and greater tolerance to drought and her
bivory (see review by Clay, 1990). Clay (1990) surmises that methodical selec-
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tion for superior vigor and persistence in forage grasses has led to unconscious 
selection for endophyte-infected plants. 

Unconscious Selection 

Under a strict definition of domestication (Isaac, 1970), few cool-season 
forage grasses are domesticated owing to our inability to visually distinguish 
cultivated from wild forms. Most cultivated forms of cool-season forage grasses 
still show various degrees of seed shattering and seed dormancy, traits generally 
lost or reduced in importance during the domestication of a species (Harlan, 1975; 
Zohary, 1984). However, shattering resistant or reduced-shattering plants that 
breed true have been discovered in tall oatgrass (Pfitzenmeyer, 1962), harding
grass (McWilliam, 1963), and orchardgrass (Love, 1969). Italian ryegrass seems 
to be an exception to this generalization. Tyler et al. (1987) concluded that Euro
pean populations of ryegrass represent a "huge hybrid swarm," in which peren
nial ryegrass and Italian ryegrass represent the opposite extremes of adaptation 
to grazing vs. infrequent hay harvesting. Italian ryegrass is believed to have been 
cultivated as a hay crop as early as the twelfth century in irrigated meadows of 
the Lombardy and Piedmont plains of Italy, where fields were regenerated by 
occasionally allowing the crop to reseed (Beddows, 1953). Italian ryegrass may 
represent a genetic adaptation of the twelfth century version of the ryegrass hy
brid swarm to a relatively stable and unstressful practice of hay production (Breese 
& Tyler, 1986). Hayward et al. (1982) suggested that this agricultural practice 
would have imposed a uniform, stabilizing selection pressure for a large number 
of generations. Selection pressure would have increased allele frequencies for 
seed production traits and those traits that confer an upright and relatively low
tillering growth habit, while maintaining much ofthe genetic variability from the 
parent species that is still seen in Italian ryegrass today. 

Harlan (1975) defines domestication as evolution under human influences, 
leaving open the possibility that some species may be considered partly domesti
cated. Stapledon (1924), Levy (1929), and Gregor and Sansome (1927) all ar
gued that unconscious selection during harvesting and replanting of seed from 
grass hay fields has acted to genetically modify commercial strains of common 
cool-season forage grasses, such that they no longer resemble "wild" or true pas
ture types that would have coevolved with ruminants. Phenotypic changes have 
probably been toward earlier flowering, larger seeds, a more erect growth habit, 
and sparser tillering (Stapledon, 1924; Stapledon, 1928; Beddows, 1953). 
Ellenberg (1963; cited by Scholz, 1975) estimates that the practice of cutting hay 
from meadows of higher-yielding forage grasses is little more than 1000 yr old. 
Given the rapid spread of agriculture throughout the temperate world during the 
past 1000 yr and the rapidity with which genetic changes can be fixed through 
natural selection and unconscious selection in forage grasses, it is entirely pos
sible that the wild types of some contemporary grasses, i.e., those present in na
ture prior to this millenium, no longer exist. 

The earliest recording of ryegrass in Great Britain, where it was introduced 
from continental Europe, is 1677 (Beddows, 1953). By 1793, ecotypic differen-
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tiation and the concept of superior strains were evident. William Pacey (a farmer) 
and William Marshall (perhaps the fIrst grassland ecologist) were the fIrst people 
to recognize and publicize strains with superior persistence and ostensibly supe
rior forage quality. Persistence was the main distinguishing factor, suggesting 
that these agriculturists had recognized the two basic forms of the ryegrass hy
brid swarm, perennial ryegrass and Italian ryegrass. George Sinclair conducted 
the fIrst scientifIc evaluation of ryegrass cultivars, including forage yield mea
surements and visual ratings of growth habit and reproductive traits, prior to 1816. 
By 1823, one seed dealer was reported to have 60 cultivars of perennial ryegrass 
(Beddows, 1953). By 1856, lC. Morton recognized that Italian ryegrass con
tained more variation in plant type than perennial ryegrass. Beddows (1968, 1969a, 
b) also has reviewed early writings on orchardgrass and timothy and, apart from 
a 1794 reference to William Pacey's interest in propagating a superior strain of 
orchardgrass (Beddows, 1953), found no evidence of intentions to propagate su
perior strains of orchardgrass or timothy until the initiation of formal breeding 
efforts at the Welsh Plant Breeding Station in 1919. 

The development of the early flowering timothy strain 'Shelby' appears to 
be a direct result of unconscious selection. Timothy hay was harvested when the 
earliest heads were mature and stored in a hay loft. Shattered seed was separated 
from chaff left behind when all hay was removed from the bam. Seed was re
planted or sold to other farmers in this manner from at least 1855 to 1930 (Evans, 
1937). 

Methodical Selection 

Formal breeding of cool-season forage grasses appears to have begun al
most simultaneously between 1889 and 1891 in Great Britain (Beddows, 1953) 
and the USA (Hays, 1892; Smith, 1948), sometime in the late nineteenth century 
in Denmark (Frandsen, 1991), and prior to 1907 in Sweden (Witte, 1919). Timo
thy was an extremely popular forage grass in late nineteenth century USA 
(Beddows, 1969a), and timothy breeding efforts in Minnesota focused exclu
sively on selection for traits related to sexual reproduction, with the objective to, 
"secure a foundation stock of plants with some distinguishing mark," (Hays, 1892). 

The earliest scientifIc reports of cool-season forage grass breeding and ge
netic studies focused on the characterization of natural variation and potential 
environmental factors causing this variation (Turesson, 1922; Gregor & Sansome, 
1927; Stapledon, 1928; Levy & Saxby, 1933). Levy (1932) was the fIrst to rec
ognize the relatively short time period (60-80 yr) in which different plant types 
of ryegrass may evolve in response to different management practices, climates, 
and soil types. These and similar results led directly to the development of the 
fIrst certifIed forage grass cultivars, for New Zealand in 1930 (Hunt & Easton, 
1989), and for Great Britain in the 1930s (Beddows, 1953). Similarly in Austra
lia, perennial ryegrass introductions, naturalized over 80 to 100 yr, were superior 
to numerous introductions of diverse origin (Moodie, 1934). Considerable progress 
has been made since then in broadening the adaptation and improving many for
age traits of cool-season forage grasses (Hanson, 1972; Barker & Kalton, 1989; 
Marten, 1989; Buxton & Casler, 1993). Despite the progress that has been made 
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in 100 yr of cool-season forage grass breeding, germplasm collection in natural 
habitats and exploitation of natural variation remain a mainstay of breeding pro
grams in nearly all economically important species (e.g., Sachs & Coulman, 1983; 
Tyler, 1987; Burner et aI., 1988; Casler, 1991). In some cases recently collected 
germplasm can provide an almost immediate infusion of new and valuable ge
netic variation. For example, a perennial ryegrass collection from the Zurich 
Uplands was considered a novel source of alleles for increased forage yield and 
nutritive value of perennial x Italian ryegrass hybrids (Jones & Humphreys, 1993). 

Conclusions 

Three selective forces have acted to bring about genetic changes in cool
season forage grasses since the advent of animal farming practices. Natural se
lection is certainly responsible for the genetic entities that were available to hu
mans 3000 yr ago. Natural selection has continued to create shifts in allele fre
quency in natural and/or undisturbed populations, causing genetic differentia
tion as a function of numerous physical and edaphic factors. These factors also 
may cause relatively short-term genetic changes in pastures, hay fields, and re
search plots. Because cool-season forage grasses are largely undomesticated, many 
genetic shifts due to natural selection result in genetic improvements from an 
agricultural viewpoint. Some natural selection pressures operate more efficiently 
and effectively in germplasm improvement programs than methodical selection 
pressures that might be applied. The effects of unconscious selection have been 
dramatic, but not to the extent observed in annual grain crops (Harlan, 1975). 
Use of forage crops as feed for animals, rather than humans, is probably respon
sible for reduced unconscious selection pressure compared to grain crops. Un
conscious selection has likely resulted in the development of one new cool-sea
son forage grass species (Italian ryegrass) and numerous strains prior to the onset 
of methodical selection programs. All three forces remain important in most cool
season forage grass breeding efforts. 

SELECTION CRITERIA 

The earliest grass breeding efforts were either formalized continuations of 
the unconscious selection that humans had practiced for traits related to sexual 
reproduction (Hays, 1892) or were efforts to capitalize upon natural variation 
created by ecotype differentiation due to variations in the physical environment 
or in farming practices (Stapledon, 1928; Levy, 1932). Spaced plantings of seed
propagated collections provided the basis for most initial cultivar development 
(Levy, 1932; Smith, 1948). Cultivars were created either by increasing seed of 
natural collections with desirable traits (Levy, 1932) or by selection of individual 
plants with desired traits (Jenkins, 1943). Individual plant selection was focused 
on traits such as growth habit, flowering date, and sustained vigor over several 
years (persistence). The earliest cultivars were mainly classified according to their 
maturity and use, tall-growing plants were selected for hay types and shorter-
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growing plants were selected for pasture types (Stapledon, 1928; Jenkin, 1943). 
Most early cultivars contained large amounts of phenotypic variability (Forde & 
Suckling, 1980), a considerable portion of which can be attributed to genetic 
factors (Van Dijk, 1955; Cooper, 1959; Hayward, 1970). Thus, these cultivars 
were extremely susceptible to genetic shifts during seed multiplication (Evans et 
aI., 1961), but they also were valuable as sources of genetic variability for devel
opment of more uniform strains (Cooper, 1959). The remainder of this section 
will focus on progress achieved through selection in cool-season forage grasses. 
Numerous selection criteria have been applied to these grasses, but the review 
will focus on those categories that have had the greatest amount of attention and! 
or impact across a range of cool-season forage grasses. 

Maturity 

Relative maturity is measured as heading date, anthesis date, or a relative 
maturity score on a particular calendar date. Historically, it is probably the single 
most commonly applied selection criterion in breeding cool-season forage grasses. 
Modem cultivars require parents which are phenotypically similar in relative ma
turity to maintain adequate seed production, uniform timing of seed matura
tion, and to be legally protected. Cultivars of most cool-season forage grasses 
vary in relative maturity of reproductive growth and this variation is often ex
ploited in developing optimum management strategies. For example, late-matur
ing orchardgrass cultivars tend to be less persistent in mixture with alfalfa than 
early maturing cultivars (Casler, 1988; Casler & Walgenbach, 1990). In peren
nial ryegrass, late-heading lines were more tolerant of freezing than early head
ing lines (Humphreys & Eagles, 1988). When harvested in a given calendar date, 
late-maturity cultivars have higher forage nutritive value for reproductive growth 
and sometimes for vegetative growth than early maturity cultivars (Casler, 1990). 

Maturity is highly heritable and readily amenable to modification by selec
tion, despite generally being considered to be polygenically inherited (Cooper, 
1959, 1960; McLean & Watson, 1992). Three cycles of phenotypic selection for 
divergent maturity in two perennial ryegrass populations led to variation far ex
ceeding that of the original popUlations (Cooper, 1959, 1960). Selection responses 
toward lateness were greater than toward earliness, prompting Cooper (1959) to 
suggest that early genotypes might be more heterozygous, displaying more non
additive genetic effects which could not be captured by the breeding system. 
McLean and Watson (1992) observed similar results in an early maturity Italian 
ryegrass cultivar (Florida 80), but the opposite asymmetry of response in their 
latest-maturing cultivar (Marshall), and no asymmetry in a medium-maturity cul
tivar, Gulf (Fig. 14-2). They speculated that low winter temperatures may pro
vide an environmental barrier to selection for earliness in the already early matu
rity Florida 80, while high summer temperature and drought may restrict pollina
tion and fertilization in extremely late-maturing plants, effectively restricting 
progress for lateness in the already late-maturity Marshall. They also indicated 
that the effectiveness of selection for earliness vs. lateness depends on the lati
tude at which selection is practiced. 
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Fig. 14-2. Effect of two cycles of selection for early heading date (negative cycle numbers) or late 
heading date (positive cycle numbers) in four populations of Italian ryegrass (adapted from 
McLean & Watson, 1992). 

Forage Yield and Vigor in Monoculture 

While many researchers have studied the inheritance and genetic variation 
for forage yield of cool-season grasses (see reviews of Hanson & Carnahan, 1956; 
Smith, 1956), there are few published reports that document the effects of selec
tion for forage yield per se (Barker & Kalton, 1989). Forage yield can be im
proved by selection (Frandsen, 1949; Carlson, 1985; Carlson, 1990), but few 
published studies include the proper controls to document the improvement in 
forage yield associated specifically with selection efforts. Selection for increased 
spaced-plant forage yield was successful, but highly variable in four of six pe
rennial ryegrass populations (Hayward, 1983). Despite realized heritability of 
only 0.13 in another perennial ryegrass population, divergent selection for spaced
plant forage yield resulted in a high-yield population with 88% higher yield than 
the low-yield population (Ceccarelli et aL, 1980). However, spaced-plant yield 
generally has not been useful in predicting forage yield of swards for perennial 
ryegrass (Petersen, 1976; Hayward & Vivero, 1984) and several other species 
(Rotili et aL, 1976; Casler & Hovin, 1985; Carpenter & Casler, 1990). Genetic 
gains made under spaced-plant conditions were decreased as the interplant spac
ing was decreased in evaluation experiments (Hayward & Vivero, 1984). Simi
larly, in reed canarygrass and smooth bromegrass, selection for increased spaced
plant forage yield did not consistently result in increased yield per unit land area 
(Surprenant et aI., 1988; Carpenter & Casler, 1990). Narrow spacings (8 or 23 
cm) may have more potential for yield selection than wider spacings (Lazenby & 
Rogers, 1964). Only two exceptions have been reported among cool-season for
age grasses. 

Four cycles of phenotypic selection were used to increase forage yield in 
'Wrens Abruzzi' rye (Bruckner et aL, 1991). Gain per cycle was 6 to 7% for the 
spaced-plant evaluation and 2 to 3% for the small-plot evaluation. Selection was 
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based exclusively on visual ratings of vigor, growth habit, and disease resistance 
of single plants spaced 45 cm apart. 

Three cycles of selection for high spaced-plant forage yield in Italian 
ryegrass gave 73 and 81% increase in two adapted cultivars and a 37% increase 
in an unadapted cultivar when tested as spaced plants (Fujimoto & Suzuki, 1975). 
Yield selection increased mean plant height and tiller number and decreased head
ing date in all three cultivars. The flrst two cycles of selection resulted in 3.3 to 
7.2% higher total sward-plot forage yield than the respective parent cultivars and 
a synthetic population had 4.5 to 12.2% higher total sward-plot forage yield than 
the three parent cultivars. 

Apart from these examples of direct selection for yield, most forage yield 
improvements in cool-season grasses have been made using one of two general 
approaches. First, selection among advanced generation synthetics on the basis 
of forage yield may be the most common use of forage yield as a selection crite
rion. Many breeding schemes emphasize distinct morphological trait goals, su
perior vigor, and uniformity among parental clones for the purpose of cultivar 
protection and use little or no selection pressure for yield until advanced genera
tions of synthetic populations are ready for fleld testing. Because most cultivars 
of cool-season forage grasses are synthetics, they are subject to inbreeding de
pression during generation advance, and may often not differ from their original 
population in mean performance. When a synthetic cultivar is to be the fmal 
product of the breeding program, Gallais (1992) recommends that breeders con
centrate their efforts on recurrent selection rather than selection among narrow
based synthetics, to make the most efflcient progress for the economic trait. 

Second, selection for speciflc modiflcations to morphological or physiologi
cal traits can be used to improve forage yield. In reed canarygrass, two cycles of 
divergent selection for speciflc leaf weight (SL W) led to dramatic changes in 
plant morphology compared to the base population (Table 14-1). The high SLW 
popUlation was 3% higher, while the low SL W population was 4% lower than 
the base popUlation in forage yield measured on sward plots (Carlson, 1990). 
Extreme modiflcation of plant morphology by breeding can induce genotype x 

management interactions. Divergent selection for leaflength in perennial ryegrass 
resulted in a long-leaf population that had 14% higher forage yield than a short
leaf population under infrequent cutting of sward plots (Table 14-2). Conversely, 
under frequent cutting, the long-leaf population had 12% lower forage yield than 
the short-leaf population. High yield was associated with high leaf area index 

Table 14-1. Mean values for morpholOgical traits of a reed canarygrass base population 
(NCRC1) and second-cycle populations selected for divergent specific leaf weight, SLW 
(Carlson et al., 1983). 

Specific Leaf Tiller Tiller 
Population leaf weight thickness number dry weight Plant height 

gm-2 mm plant -1 g cm 
High-SLW (C2) 57.7 0.234 124 1.17 164 
NCRCI 45.7 0.193 169 0_89 154 
Low-SLW (C2) 36.3 0.162 200 0.64 143 
LSD (0.05) 1.6 0.007 15 0.09 5 



GERMPLASM & CULTIV ARDEVELOPMENT 425 

(LA!) at nearly complete light interception and a low light extinction coefficient 
(KviJ under infrequent cutting, but with high LAI of the basal portion of the 
canopy and high Kvis under frequent cutting (Rhodes, 1971). The positive asso
ciation of leaf length and forage yield under infrequent cutting was strong and 
consistent for Italian ryegrass and Italian ryegrass x perennial ryegrass crosses, 
but was low and inconsistent for perennial ryegrass populations (Rhodes, 1975). 
Regrowth forage yield in tall fescue was 38 and 24% higher in swards of a high
leaf area expansion rate (LAER) population than in swards of a low-LAER popu
lation under infrequent and frequent cutting, respectively (Table 14-2). Repro
ductive-growth forage yield under infrequent cutting was unaffected by selec
tion, whereas reproductive-growth forage yield under frequent cutting was re
duced by selection for high LAER. 

Selection for increased leaf photosynthesis has not been effective in in
creasing forage yield, because leaf size and photosynthesis per leaf area are often 
negatively correlated (Wilson, 1984). Conversely, divergent selection for meso
phyll cell size in perennial ryegrass had a measurable effect on forage yield (Wilson 
& Cooper, 1970). The population with smaller mesophyll cells had 36% smaller 
mesophyll cells, 18% thinner mesophylliayer, 28% heavier seed size, 12% higher 
net assimilation rate, 11 % lower leaf area ratio, 15% lower relative leaf growth 
rate, and 42% higher forage yield than the population with larger mesophyll cells. 
Because leaf size and mesophyll cell frequency did not change with selection, 
Wilson and Cooper (1970) concluded that this selection criterion should be use
ful in selecting plants that have both an increased leaf size and higher photosyn
thetic rate per leaf area. 

Divergent selection for mature-tissue dark respiration rate of perennial 
ryegrass leaves resulted in slow-respiring populations with 20 to 34% lower ma
ture-tissue dark respiration rate than the fast-respiring populations (Robson, 1982a; 
Wilson, 1982). The slow-respiration population produced more dry matter for 
the same cost in CO2 respired per unit ground area (Robson, 1982a). Robson 
(1982a, b) attributed half of this savings to more economic use of C and half to a 

Table 14-2. Forage yields (on a dry matter basis) of perennial ryegrass populations selected 
for long or short leaf length and tall fescue populations selected for high or low leaf 
area expansion rate (LAER). harvested on an infrequent and a frequent schedule. 

Tall fescue§ 

Harvest frequency/ Perennial Reproductive Vegetative 
Population t ryegrass totalt growth growth Total 

Mg ha- 1 

Infrequent 
Long (high) 12.62 4.35 l.87 6.22 
Short (low) 1Ll1 4.16 l.36 5.52 

Frequent 
Long (high) 8.76 2.97 2.41 5.38 
Short (low) 9.71 3.66 l.95 5.61 

t Long/short refer to leaf length of perennial ryegrass populations. high/low refer to LAER 
of tall fescue populations. 

:j: Adapted from Rhodes. 1969. 
§ Adapted from SIeper and Nelson. 1989. 
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25% greater adult-plant tiller number in the slow-respiration population. In two 
field trials, synthetics selected for a slow-respiration rate had forage yields con
sistently higher than the base population, with a 5.6 to 12.8% increase under a 
frequent harvest management and a 5.2 to 12.9% increase under an infrequent 
harvest management (Wilson & Jones, 1982). The greatest yield advantage of 
the slow respiring populations was observed under the warmest conditions, when 
respiration rates are expected to be higher. 

In orchardgrass, divergent selection for leaf tensile strength led to a 20% 
difference in leaf strength between high and low populations (Wilson & Jones, 
1981). The high leaf strength population had higher yield than the low leaf strength 
population, 9% under infrequent harvest and 5% under frequent harvest. 

Trupp and Carlson (1971) increased mean seed weight of smooth brome
grass by 30% over three cycles of recurrent selection. The higher seed weight 
populations had higher germination percentages and mean seedling weight up to 
39 d after planting. All effects of selection for higher seed weight on seedling 
vigor or forage yield had disappeared by 62 d after planting (Jessen & Carlson, 
1985; Trupp & Carlson, 1971). Three cycles of divergent selection for a speed
of-germination index in Altai wildrye (high = 21.5 vs. low = 5.9), resulted in 
significant differences in stand establishment (85 vs. 76%, respectively) 
(Lawrence, 1977). Two-year total forage yield was lower for the slow-germinat
ing population, but there was no difference in yield when stand establishment 
was equalized, suggesting that selection did not affect forage yield per se. 

Forage Yield and Persistence in Mixture With Legumes 

Stapledon (1924) was the first scientist to describe the poor potential for 
commonly cultivated types of orchardgrass and perennial ryegrass (early flower
ing, erect, and sparse-tillering) to form productive mixtures with white clover. 
He suggested instead, "that the Perennial Rye Grass cleaned out of Kentish Wild 
White Clover represents a very valuable and leafy form well suited for the estab
lishment of permanent pastures .... " Long-term, coexisting perennial ryegrass
white clover populations have higher total forage yield and clover yield than 
noncoexisting mixtures when evaluated in common nurseries (Evans et aI., 1989). 
A perennial ryegrass population selected for long, rigid leaves and erect tillers 
had higher yield in mixture with white clover, without reducing clover yield, 
compared to a cultivar without these traits (Evans et aI., 1989). 

In a review of a series of grass-legume competition experiments, Zannone 
et ai. (1986) concluded that identification of superior cultivars for grass-legume 
associations does not require mixed-stand evaluations. The grass-legume asso
ciations with the highest forage yield and persistence were those in which the 
grass and legume cultivars both were high in vigor and the grass cultivar was 
extremely early in maturity, as measured in monoculture. Jones et ai. (1989) 
reached a similar conclusion about optimal reed canarygrass phenotypes for 
compatability with two perennial legumes. Most studies support the contention 
that grass cultivar vigor is highly correlated between mixed stands and mono cul
tures (Churchill, 1947; Wilsie, 1949; Weiss & Mukerji, 1950; Schmidt & Tenpas, 
1965; Krueger & Scholl, 1970). 
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Changes in harvest management may change the relationship between flow
ering date and performance of grass cultivars in mixture with alfalfa. An early 
flowering timothy cultivar had vigor superior to later-flowering cultivars in in
frequently harvested mixtures, but was inferior in frequently harvested mixtures 
(Smith et aI., 1973). Persistence of ryegrass cultivars in mixture with alfalfa is 
not related to their relative maturity (Casler, 1988; Casler & Walgenbach, 1990), 
but later-flowering orchardgrass cultivars had the lowest vigor, regrowth, and 
persistence within a diverse group of 40 cultivars grown in mixture with alfalfa 
(Casler, 1988). Likewise, selection for reduced canopy height, decreased tiller 
number, and delayed maturity led to orchardgrass populations more compatible 
with birdsfoot trefoil than populations derived by selection in the opposite direc
tion, as measured by birdsfoot trefoil yield in mixture (Short & Carlson, 1989). 
In tall fescue-birdsfoot trefoil mixtures based on tall fescue populations differ
ing in LAER (SIeper & Nelson, 1989), birdsfoot trefoil forage yields did not 
differ among mixtures and tall fescue forage yields were highly correlated be
tween mixtures and mono cultures (Nelson et aI., 1989). 

Selection of progenies persisting in competitive, interspecific mixtures led 
to populations with faster and greater regrowth in smooth bromegrass (Table 
14-3) and perennial ryegrass (Van Dijk, 1983). In the smooth bromegrass study, 
ground cover also was increased by an average of76%. A similar selection pro
tocol, employed by Novy et ai. (1995) in intermediate ryegrass and perennial 
ryegrass, led to populations with greater contributions to grass-legume mixture 
yield (a genetic increase of 53 and 82 g grass dry matter kg-1 total dry matter, 
respectively). The relative ranking among cultivars, for persistence in mixture 
with alfalfa, appears to be a function of latitude in smooth bromegrass and tall 
fescue, and of soil type in timothy (Casler & Walgenbach, 1990). These interac
tions and the population responses of sweet vernal grass to differences in soil pH 
and fertility (Snaydon, 1978) suggest that environmental variation may result in 
large differences among genotypes which are selected from forage mixtures. In 
sweet vernalgrass, genetic variation was greatest in environments that were most 
variable from year-to-year (Snaydon, 1973) and selection pressure for persis
tence was greatest in plots with the tallest vegetation and highest yield (Davies & 

Table 14-3. Three-year mean vigor and recovery of smooth bromegrass populations select
ed or not selected for increased persistence in mixtures with alfalfa and evaluated in 
similar mixtures, adapted from Casler (1988). 

Population 

Not selected 
Selectedt 

Not selected 
Selectedt 

Harvest 

2 3 

cm 

Vigor: mean height above alfalfa canopy 

13 
17 

4 
5 

1 
2 

Recovery: mean height 2 wk after harvest 

7 
9 

5 
8 

7 
10 

t Selected vs. not selected different at P < 0.01 for all six pairs. 
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Snaydon, 1976). Coexisting crop species or populations may influence the ge
netic shifts of populations under natural selection pressure (Evans et aI., 1989). 

Biotic Stresses 

Biotic stresses on forage grasses include diseases, nematodes, insects, and 
herbivores. Because the interactions of herbivores with grass genetics and breed
ing systems have been reviewed earlier, this section will focus on pests. 

Diseases 

Resistance to diseases has been an important component of many 0001-

season forage grass breeding programs since it was first learned that resistance to 
timothy rust could be improved by selecting plants with relatively minor symp
toms (Webber, 1912; Witte, 1919). Braverman (1986) recently reviewed the lit
erature on the inheritance of resistance to most important disease organisms in 
the economically important cool-season forage grasses. The review includes a 
summary of the effects of disease infection on forage yield and nutritive value, a 
summary of the inheritance of resistance to some diseases, and numerous lists of 
resistant or partially resistant cultivars. Enhanced resistance to diseases in cool
season forage grasses, obtained by breeding, can improve forage yield and nutri
tive value in the presence of disease organisms (Catherall, 1987; Karn et aI., 
1989), but has little or no influence on forage yield and nutritive value when the 
pathogen is absent (Hides & Wilkins, 1978; Catherall, 1987; Oberheim et aI., 
1987), suggesting that polygenic disease resistance has little or no physiological 
cost. 

Two host-parasite complexes appear most frequently in cool-season for
age grass breeding literature: stem rust of orchardgrass and crown rust of 
ryegrasses. Inheritance of resistance in both cases is complicated by genetic in
teractions between the host and the pathogen (reviewed by Braverman, 1986). 
Single genes, dominant for resistance to specific races of the pathogen and with 
relatively large effects, have been found in both grass genera. In both cases, there 
also is a considerable amount of genetic variation apparently due to numerous 
genes with small additive or additive and dominant effects (Hayward, 1977; Miller 
& Carlson, 1982). 

Quantification of progress made in breeding for disease resistance is ex
tremely difficult. Many resistant cultivars and populations derive from numer
ous and diverse sources and cannot be compared to their source populations per 
se in uniform experiments. Intrapopulation selection, and subsequent evaluation 
of progress, provides the best documentation of the effects of selection on changes 
in disease resistance. Intrapopulation improvement has been documented for re
sistance to stem rust of orchardgrass (Miller & Carlson, 1982), purple leaf spot 
of orchardgrass (Zeiders et aI., 1984), brown leaf spot of smooth bromegrass 
(Jessen & Carlson, 1985; Jessen et aI., 1983; Berg et aI., 1986), leaf spot of smooth 
bromegrass (Smith & Knowles, 1967), leaf blight of tall fescue (Smith et aI., 
1986), crown rust of Italian ryegrass (Hides & Wilkins, 1978; Mansat & Betin, 
1979), ryegrass mosaic virus (RMV) of Italian ryegrass (Hides & Wilkins, 1978), 
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and leaf spot of intermediate wheatgrass (Krupinsky & Berdahl, 1982). Both crown 
and stem rust resistance of orchardgrass increased during two cycles of selection 
for seed and forage traits, apparently due to improved plant vigor, because rust 
resistance was only a minor selection criterion (Berg et aI., 1993). 

Both selection studies for crown rust resistance in Italian ryegrass were 
based on artificial inoculation in the glasshouse and included at least eight source 
populations. Selection progress, as measured in the glasshouse, varied among 
source populations in both studies. Although artificial inoculation in the glass
house was necessary to estimate direct response to selection, it overestimated 
genetic progress under natural inoculation in the field by up to 400% for RMV of 
Italian ryegrass (Hides & Wilkins, 1978) and by up to 218% for crown rust of 
diploid Italian ryegrass (Mansat & Betin, 1979). For tetraploid Italian ryegrass, 
selection progress under natural inoculation in the field corresponded well with 
results from artificial inoculation in the glasshouse. Field screening with natural 
inoculation also has been successful in some selection studies (Smith & Knowles, 
1967; Miller & Carlson, 1982; Jessen et aI., 1983). Miller and Carlson (1982) 
demonstrated that natural inoculum of the stem rust pathogen can be genetically 
diverse, both within and between seasons. They warned that genetic diversity of 
orchardgrass germplasm source should be maximized for development of effec
tive rust resistance. 

Wilkins (1991) inferred that a considerable amount of genetic variation is 
maintained in wild grass populations by frequency-dependent selection. Increas
ing the frequency of particular alleles reduces their value, because of evolution 
in the pathogen population (Wilkins, 1991). In perennial ryegrass, the crown rust 
pathogen is capable of rapid evolution to overcome a high degree of host-plant 
resistance (Wilkins, 1978). Moderate resistance was more stable than a high de
gree of resistance. Wilkins (1978,1991) surmised that the high degree of genetic 
diversity within most grass populations and the use of recurrent selection in the 
field (to preserve genetic diversity and expose populations to a wide array of 
pathogen genotypes) are responsible for the relative stability of disease resis
tance in most breeding programs and their cultivars. He also indicated that poly
genic resistance to crown rust in ryegrass is widespread (Wilkins, 1975). 

York and Cook (1989) selected perennial and Italian ryegrass plants for 
resistance to root-knot nematode. Although the genetics of host-plant resistance 
have yet to be reported, most plants classified as resistant or susceptible, on the 
basis of gall number in an unreplicated screening, maintained their original clas
sification in a second screening. The authors felt that the large selection differen
tials implied that host-plant resistance is a component of this phenotypic varia
tion. Selection differentials in the second screening varied widely among seven 
cultivars, suggesting that selection will not be equally effective in all germplasm 
sources. 

Insects 

Insect pests have received considerably less attention by grass breeders 
and their associates than disease pests, in part, due to a general perception that 
they are less serious and that screening techniques are more variable and difficult 
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to control. The only reports of enhanced insect resistance due specifically to se
lection and breeding of cool-season forage grasses are a result of unconscious 
selection. Reduced cellulose concentration in perennial ryegrass was associated 
with reduced feeding and damage by stem weevil, and reduced pupation by house
fly larvae (Lancashire et aI., 1977). Also in perennial ryegrass, selection for de
creased epidermal ridging of leaves created an environment apparently less ac
ceptable to mites, which may transmit ryegrass mosaic virus (Chamberlain & 
Evans, 1979). 

Several species of Triticeae grasses showed varying levels of damage and 
reproduction by Russian wheat aphid, but intraspecific variation for damage was 
clearly demonstrated only in quackgrass (Kindler et aI., 1991). The study pro
vided strong evidence that the de facto resistance of quackgrass x bluebunch 
wheatgrass hybrid derivatives was contributed by the quackgrass genome. Varia
tion also has been shown for feeding damage among Triticeae tribe genomes 
(grass bug, Hewitt, 1980; bluegrass billbug, Nielson et aI., 1993) or reed 
canarygrass genotypes (frit fly, Byers & Sherwood, 1979). In the latter two stud
ies, the authors suggested factors apparently involved in host-plant resistance: a 
rhizomatous phenotype and the presence of the J, N, or P genome in the Triticeae 
tribe; high tiller density and/or alkaloid concentration in reed canarygrass. In 
both studies the authors were optimistic about the prospects for selecting geno
types with superior host-plant resistance. 

Abiotic Stresses 

Most genetic progress made toward abiotic stress resistance has been dur
ing the process of proprietary cultivar development and, as such, is not well docu
mented. Many documented gains in cool-season forage grasses are the result of 
natural selection, either used directly by increasing superior ecotypes as a culti
var, or incorporated into the breeding program through specific selection proto
cols. Field screening protocols can be highly variable, unrepeatable, and difficult 
to defme. Laboratory conditions may not suffer from these negative aspects, but 
may require expensive equipment and time-consuming assays, and are still sub
ject to a field evaluation of progress. 

Cold Temperature 

Cold or freezing tolerance is probably the abiotic stress which has received 
the most attention for perennial grasses of temperate climates. Development of 
specific screening procedures for breeding programs is complicated by other fac
tors affecting winter survival, such as hardeningldehardening conditions (Gay & 
Eagles, 1991). Freezing tolerance also can break down, for example, upon pro
longed exposure of perennial ryegrass to high concentrations of atmospheric S02 
(Davison & Bailey, 1982). Selection for high water soluble carbohydrate (WSC) 
concentration increased cold tolerance in perennial ryegrass (Breese & Foster, 
1971), but not all genetic variation for cold tolerance is associated with WSC 
concentration (Hides, 1978). Humphreys (1989a) measured 13 additional traits 
of 86 perennial ryegrass accessions and found their relationships to freezing tol-
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erance to be complex, with relatively small effects of each individual trait on 
freezing tolerance per se. 

Cold or freezing tolerance can often be obtained by collection, testing, and 
selection of accessions or cultivars from appropriate climates (e.g., Badoux, 1979; 
Klebesadel & Helm, 1986). Orchardgrass accessions grown at a low altitude site 
showed increasing winter survival with higher altitude of the collection site 
(Badoux, 1979). The relationship broke down for the highest altitude collections, 
suggesting that these accessions were intolerant of low temperature stress when 
snow cover was absent. Humphreys and Eagles (1988) and Tcacenco et al. (1989) 
developed a cold tolerance test for perennial rye grass which measures the lethal 
temperature for 50% ofthe tillers on a plant (L T 50)' Values of L T 50 were posi
tively correlated with the mean temperature of the coldest month at the site of 
accession origin for both studies and with sward persistence following three win
ters in the latter study. In tall fescue, genome size [amount of heterochromatin 
and frequency of repeated deoxyribonucleic acid (DNA) sequences] was posi
tively correlated with latitude of origin, suggesting that structural changes in DNA 
may playa role in environmental adaptation (Ceccarelli et al., 1992). 

Hides (1979) selected for increased cold tolerance (percentage tiller sur
vival at low temperature) in nine Italian ryegrass cultivars. Two cycles of selec
tion reduced tiller mortality by 1 to 50%, with a mean of 19%. However, when 
populations were field tested, plant survival decreased due to selection in six of 
the nine cultivars, from 74% in the original cultivars to 68% in the selection 
populations, averaged over all cultivars. Over eight harvests, the effect of selec
tion on forage yield gradually decreased from + 14% to -18%. Because selection 
was conducted on seedlings, the procedure may have favored more vigorous seed
lings which were shorter-lived as adults (Hides, 1979). 

Air Pollutants 

Natural selection in several grass species has evolved S02-tolerant popula
tions in regions where S02 pollution from power plants has been prevalent for 
numerous years. In some cases, tolerance to acute S02 injury (as measured by 
percentage leaf tissue destroyed or dry matter reduction upon short-term expo
sure to high levels of S02) has evolved within 3 to 5 yr of establishment at pol
luted sites (Wilson & Bell, 1985). In red fescue (Wilson & Bell, 1986) and pe
rennial ryegrass (Horsman et al., 1979), tolerance to acute S02 injury evolved in 
direct proportion to selection pressures, as determined by recorded S02 pollution 
levels. There is conflicting evidence as to whether alleles for S02 tolerance carry 
any deleterious effects. In SOrtolerant populations of perennial ryegrass, timo
thy, and Kentucky bluegrass from Phillips Park, tolerance to acute S02 injury 
was reduced within I to 2 yr after ambient S02 pollution had dramatically de
clined (Wilson & Bell, 1986). Conversely, S02-tolerant populations of perennial 
ryegrass were identified in the Liverpool area despite drastic reductions in mean 
ambient S02 levels for the 10 to 15 yr prior to collection (Horsman et al., 1979). 
In the only assessment of heritable variation for S02 tolerance of a grass species 
to date, Wilson and Bell (1990) showed that tolerance to acute S02 injury is 
heritable in perennial ryegrass, with relatively few genes involved and domi
nance or partial dominance toward susceptibility. 
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A population of orchardgrass, exposed long-term to high levels of atmo
spheric S02 and N02 at Rainham, appeared to have evolved tolerance to acute 
levels ofN02 alone and an N02/S02 mixture (Taylor & Bell, 1988). In the same 
study, perennial ryegrass plants from Rainham appeared to have developed a 
mechanism for preferential utilization of atmospheric N02 as a source of nutri
tional N. Rainham plants had less dead shoot dry matter and a lower dead/live 
shoot ratio than nontolerant plants under chronic N02 levels (long-term expo
sure to relatively low ambient concentrations). Thus, populations which have 
evolved tolerance to N02 also may have evolved a dependence on atmospheric 
N02, the result of which could be reduced fitness under nonpolluted conditions. 

Differences between plants collected at S02 polluted sites and bred culti
vars offour species were consistent when evaluated under both acute and chronic 
S02 levels (Bell et aI., 1982). Despite the coincidence of tolerance to both acute 
and chronic injury in these natural populations, acute and chronic injury to S02 
(Bell et aI., 1982) and N02 (Taylor & Bell, 1988) are uncorrelated on an indi
vidual plant basis. Indeed, avoidance mechanisms seem to be responsible for 
tolerance to acute injury in several species, while tolerance to chronic injury ap
pears to be based on internal mechanisms (Ayazloo et aI., 1982). Breeding pro
grams aimed at tolerance to air pollutants may need to carefully address the issue 
of acute vs. chronic injury. 

Drought 

There has been considerable effort devoted to development of effective 
selection criteria for drought tolerance, a subject recently reviewed by Johnson 
and Asay (1993). Although numerous selection criteria have been developed and 
some tested for genetic variability, very few have been subjected to directional 
selection pressures and subsequently been tested for genetic response in cool
season forage grasses. Grain crops are exceptions to this, but will not be covered 
in this chapter. 

Asay and Johnson (1980) and Berdahl and Barker (1984) both concluded 
that selection for high emergence from deep planting ( 5 cm) and high seed weight 
should be successful in Russian wildrye. Both studies showed positive correla
tions between these two variables and field emergence percentages and both were 
conducted with the goal of enhancing drought avoidance of seedlings during stand 
establishment. Four cycles of mass selection for emergence vigor from a 5-cm 
planting depth resulted in a 175 to 254% increase in emergence percentage from 
a 5-cm planting depth over that of the original cultivar, Sawki Russian wildrye 
(Lawrence, 1979). Field emergence increased by 70% over Sawki in one trial, 
while establishment year forage yield increased 26% over Sawki, averaged over 
five trials, including both dryland and irrigated sites. 

Two cycles of selection in perennial ryegrass were used to create two pairs 
of populations differing in stomatal resistance, rs (Wilson, 1975a). Populations 
with long vs. short stomatal length (32.5 vs. 24.4 ~m) had rs = 4.4 and 5.6 scm-I, 
respectively, while those with frequent vs. infrequent stomata (124.5 vs. 85.2 
mm-2) had rs = 4.7 vs. 6.9 scm-I, respectively. Upon deprivation of water, leaf 
extension rates declined more rapidly in the long stomata and the frequent sto
mata populations compared to their counterpart popUlations. Wilson (1975a) con-
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cluded that plants with low rs: (i) used water more rapidly than those with high rs 
and (ii) can be obtained either by selection for short or infrequent stomata, al
though selection for low stomatal frequency was the most effective means used 
in this study. Using the same base population (,Grasslands Ruanui') as in the 
above study, Wilson (1975b) also conducted two cycles of selection for deep vs. 
shallow epidermal ridging on the adaxial leaf surface. Deep- vs. shallow-ridged 
populations had rs = 4.4 vs. 5.6 scm-I. Plants from the shallow-ridged popula
tion were better able to save water during drought compared to plants from the 
deep-ridged population. Because epidermal ridging tended to affect transpiration 
more during the driest portion of the drought period, Wilson (1975b) concluded 
that reduced epidermal ridging and reduced stomatal frequency represent differ
ent strategies for water conservation, further suggesting that both traits could be 
combined for maximum protection. 

Gay (1989) selected perennial rye grass plants for divergent leaf water con
ductance (L We). Although no progeny were produced in this study, repeatabil
ity of the L we measurement was high, with high- vs. low group means main
taining 38 to 81 % of their original divergence upon two subsequent evaluations. 
Variation in L we was not related to stomatal length or frequency or to leaf or 
tiller growth rates (Gay, 1986). Both low-L we plants and shallow-ridged plants 
maintained higher soil moisture at a 12-cm depth during a 6-wk drought (9-23% 
and 6-32% higher than the original population for low L we and shallow ridges, 
respectively) (Wilson, 1976). Both populations also had a 19 to 25% higher crop 
growth rate than the base population. 

Thomas and Evans (1989) conducted one cycle of selection for high vs. 
low osmotic potential ("'5) in perennial ryegrass. The low "'5 population had 9% 
lower "'5' 3% lower transpiration rate, 24% lower wilt score, and 10% fewer 
tillers than the high "'5 population. The two populations did not differ in forage 
yield, accumulated during drought or upon rewatering, nor did they differ in mean 
growth rate or leaf extension rate during drought (Thomas & Evans, 1991). 

Based on prior knowledge of correlations between high water-use efficiency 
(WUE) and low values of the e isotope (13e vs. 12C) discrimination ratio (Ll), 
Read et al. (1993) conducted divergent selection for Ll in standard crested wheat
grass. Realized heritability for Ll was 0.8 and genetic progress was symmetrical, 
approximately 2% in each direction. Low-Ll progenies had 16% lower e02 ex
change rate, 30% lower stomatal conductance, 22% lower transpiration rate, and 
19% higher WUE than high-Ll progenies. Divergent selection for Ll did not alter 
forage yield in the field conditions of northern Utah for either the parental or 
progeny generations. 

Natural selection also may playa role in improving drought tolerance. Some 
Algerian perennial ryegrass accessions had higher forage yield following drought 
than locally grown cultivars in Victoria, Australia (Reed et aI., 1987). The rela
tively low yield of Algerian accessions when water was more available, pointed 
out their narrow range of adaptation and suggested that efforts to transfer their 
drought tolerance to adapted germ plasm will likely require large populations and 
intensive efforts, if indeed the apparent linkage between these two traits can be 
broken. Wedderburn et al. (1990) similarly reported perennial ryegrass collec
tions from sites which were more subject to drought stress to have lower leaf 
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area, fewer tillers, and lower forage production upon rewatering than collections 
from sites which were less subject to drought stress. They concluded that 
germplasm collected from the drier habitats had little value in developing supe
rior cultivars for sites which are not consistently subject to drought. However, 
they also indicated that some plants fell within the upper 10% of the yield distri
bution for both stressed and nonstressed conditions, again suggesting that the 
apparent linkage between drought tolerance and narrow adaptation may be bro
ken by intensive breeding efforts. 

Selected populations were compared to wild or naturally occurring popu
lations of seven species found in low fertility areas ofN ew Zealand (Wedderburn 
et aI., 1993). Although selection did not involve a drought tolerance evaluation 
per se, selected populations of five species (crested dogstail, colonial bentgrass, 
Yorkshire fog, sweet vernalgrass, and orchardgrass) had superior recovery from 
drought following rewatering than did their respective wild populations. Selected 
and wild populations generally had similar forage yields under nondrought
stressed conditions. The authors concluded that the improved drought recovery 
of the selected populations was due to traits which were not immediately obvi
ous. 

Salinity 

Natural variation for tolerance to a saline growth environment has been 
demonstrated in numerous grass species ranging from those found in coastal salt 
marshes (Hannon & Bradshaw, 1968; Wu, 1981) to rocky, alpine environments 
(Acharya et aI., 1992). Much of this variation is correlated with common human 
perceptions or measurements of the degree to which salt defmes the local growth 
conditions (Ahmad et aI., 1981; Wu, 1981). Large variation in tolerance arose 
between collection sites as close together as 10m, and this variation was highly 
correlated (correlation coefficient as high as 0.93) with soil salinity measured at 
the specific site of origin for all six grass species collected from within a single 
pasture (Venables & Wilkins, 1978). The latter study included species with a 
range of inherent salt tolerances, from perennial ryegrass, which has low toler
ance and rarely occurs naturally on saline soils, to alkaligrass, which could not 
have existed on the site prior to salinization (Venables & Wilkins, 1978). 

Dewey (1962) selected five standard crested wheatgrass populations for 
germination under salt stress at three different salt concentrations. Significant 
improvement in adult-plant forage yield under saline conditions was made over 
untreated checks for selection at one or two salt concentrations, with the excep
tion of 'Summit' for which no progress was observed (Fig. 14-3). The lack of 
relationship between selection response and salt concentration during selection, 
and the general lack of progress led Dewey (1962) to conclude that a selection 
strategy for salt tolerance should be based on several stages in a plant's life cycle. 
These results also might suggest that heritability and additive genetic variation 
for salt tolerance in standard crested wheatgrass populations are extremely low. 

In contrast, Ashraf et a1. (1986a) selected seven species (creeping bentgrass, 
colonial bentgrass, Yorkshire fog, perennial ryegrass, red fescue, orchardgrass, 
and alkaligrass) for long seedling root growth in salt solution culture and ob-
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Fig. 14-3. Forage yield of crested wheatgrass progenies whose parents were selected for rapid 
germination at one of four salt concentrations. Forage yield of each population was measured 
at a constant salt application (12 g kg-I) and expressed as a percentage of forage yield for the 
respective population grown under no salt conditions (adapted from Dewey, 1962). 

tained significant, consistent, and repeatable adult-plant responses in all seven 
species. Results were consistent with those of Venables and Wilkins (1978) in 
that large selection differentials were maintained for species with the entire range 
of inherent tolerance to salt. Ashraf et al. (1986b) produced poly cross progenies 
of selected and unselected plants of four of the above species. Plant dry weight 
increased in the selected vs. unselected popUlations by 67 to 100%, averaged 
over three salt concentration treatments. Selection also increased plant dry weight 
in a no-salt environment by 5 to 6% for perennial ryegrass, orchardgrass, and 
Yorkshire fog and by 80% for red fescue, suggesting that alleles for salt toler
ance in these species did not carry a physiological cost. Selection also increased 
tiller number for all species at all salt concentrations, including zero, and de
creased the shoot/root ratio in perennial ryegrass. Ashraf et al. (1986b) concluded 
that this selection protocol would have considerable agricultural impact if the 
results are as favorable through one or two more selection cycles. The success of 
these studies compared to that of Dewey's may be due to their greater selection 
intensities (0.0014-0.0094 for Ashraf et aI., 1986a, vs. 0.025 for Dewey, 1962) 
and their reliance on a measurement of root growth in saline solution vs. speed of 
germination for the crested wheatgrass study. 

Heavy Metals 

Populations tolerant to at least one heavy metal element have been identi
fied in at least 12 species and nine genera classified as cool-season grasses 
(Antonovics, 1975; Antonovics et aI., 1971). Tolerance generally evolves in popu
lations which are in close proximity to mine spoils or smelters and for which the 
soil has become heavily contaminated. Tolerance to Zn also can evolve from 
contamination by wind-blown mine waste or simply by Zn solubilization when 
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rainwater comes in contact with electricity pylons (Coulaud & McNeilly, 1992). 
Complete tolerance can evolve within 5 yr if selection pressures and genetic vari
ability are great enough (Bradshaw, 1974; Wu et aI., 1975). Evolution of specific 
metal tolerances is generally in response to the presence of that element in the 
soil (Antonovics et aI., 1971). However, there are examples of cross tolerances 
to Pb and Zn in tufted hairgrass (Cox & Hutchinson, 1980) and Ni in colonial 
bentgrass (Gregory & Bradshaw, 1965) despite the absence of elevated levels of 
these elements in soils contaminated with other elements. 

Tolerance to heavy metals in cool-season grasses has evolved through both 
avoidance (limited uptake) and true tolerance (exclusion from metal-sensitive 
sites, metal-resistant enzymes, or alteration of metabolism) mechanisms (reviewed 
by Ernst, 1976). Tolerance also may be environmentally sensitive, as illustrated 
by the breakdown of Cd tolerance in Yorkshire fog, tufted hairgrass, and red 
fescue when plants were transplanted from contaminated to uncontaminated soil 
(Baker et aI., 1986). Cadmium tolerance lost in this way was not recovered when 
plants grown in uncontaminated soil were transplanted back into Cd-contami
nated soil. Tolerance to heavy metals may carry a severe cost in both vegetative 
and reproductive fitness, although this generalization is by no means universal. 
Colonial bentgrass and sweet vemalgrass plants tolerant to Pb and Zn were ex
tremely low in vegetative vigor and dry matter yield compared to nontolerant 
plants when grown in uncontaminated soil (Cook et aI., 1972; Hickey & McNeilly, 
1975). Conversely, colonial bentgrass plants selected for varying degrees of Cu 
tolerance within three populations did not show a consistent association of inflo
rescence number or dry matter yield with Cu tolerance (Nicholls & McNeilly, 
1985). 

Tolerance to heavy metals has been demonstrated to be heritable in several 
species (Bradshaw, 1976; Humphreys & Bradshaw, 1977). Tolerance can be se
lected generally only in those species which are typically found to naturally colo
nize mine spoils or smelter grounds, although Cu tolerance in orchardgrass 
(Gartside & McNeilly, 1974) and Zn tolerance in tall oatgrass (Humphreys & 
Bradshaw, 1977) are exceptions to this. Because tolerance is so widespread in 
some species, Bradshaw (1974) concluded that tolerance alleles are present and 
maintained at very low frequency in populations ofthese species, increasing only 
when they confer a selective advantage. Fully tolerant plants may only exist in 
natural populations at a frequency of 1 to 2% (Walley et aI., 1974). Furthermore, 
isozyme analysis ofCu-tolerant creeping bentgrass populations show substantial 
polymorphism (Wu et aI., 1975), suggesting that heavy metal selection pressures 
do not reduce genetic diversity, despite the high intensity of selection. 

Macnair (1991) argued, on the basis of recent results and a selection re
sponse model, that only major genes for metal tolerance can explain the rapid 
and dramatic adaptive responses of these species to toxic soils. The consistent 
observation that fully tolerant individuals can be selected in a single generation 
suggests that a single major gene may be responsible for many of the observed 
metal tolerances. This also was suggested by one of the few conprehensive in
heritance studies conducted on heavy metal tolerances, the case of arsenate toler
ance in Yorkshire fog (Macnair et aI., 1992). Conversely, the instability of Cd 
tolerance in some species (Baker et aI., 1986) and the variable penetrance of 



GERMPLASM & CULTIV ARDEVELOPMENT 437 

arsenate tolerance in Yorkshire fog (Macnair et aI., 1992) are suggestive of modi
fier genes, i.e., polygenic inheritance. 

By the mid-1970s, three cultivars had been released for use in bioremediation 
of mine spoils-Merlin red fescue and Goginan colonial bentgrass with Pb/Zn 
tolerance and Parys colonial bentgrass with Cu tolerance-all of which were in
creases of superior ecotypes (Humphreys & Bradshaw, 1977). Relatively little 
effort has gone into development of screening techniques for methodically in
creasing heavy metal tolerance in a breeding program or investigating the inher
itance of heavy metal tolerance. Gartside and McNeilly (1974), Symneonidis et 
a1. (1985), and Walley et al. (1974) all screened populations otherwise unex
posed to heavy metals, using either solution culture or artificially contaminated 
soil. A single screening identified fully Cu-tolerant (tolerance index ~50%) colo
nial bentgrass and orchardgrass plants occurring at a frequency of 0.8%. In con
trast, first-cycle survivors of four other species had tolerance indices ranging 
from only 7 to 20% (Gartside & McNeilly, 1974). Parent-offspring heritability 
estimates were ~0.66 for each species. Walley et al. (1974) obtained fully Cu
tolerant colonial bentgrass plants in a single screening. When the Cu survivors 
were screened for Zn tolerance, moderately Zn-tolerant plants, which had re
tained their Cu tolerance, were identified. 

Clearly, plant breeding efforts can aid in developing vegetative products 
for mine and smelter bioremediation. The extremely low frequency of metal
tolerant plants in seven nontolerant colonial bentgrass populations, compared to 
high frequencies in cultivars Parys and Goginan (Symeonidis et aI., 1985), sug
gest that plant breeding programs will require several cycles of intense selection 
to improve multiple metal tolerance in nontolerant populations. Two cycles of 
phenotypic selection with selection intensities of 0.003 to 0.004 increased Zn 
tolerance of four colonial bentgrass populations to approximately half the level 
acheived through 21 or 31 yr of natural selection (AI-Hiyaly et aI., 1993). Me
thodical selection for Zn tolerance in a fifth population was unsuccessful, mir
roring the lack of evolved tolerance during the 31-yr exposure of this population 
to Zn. Grass breeders with the objective of developing heavy metal tolerant 
germplasm would be wise to begin with germplasm already possessing some 
degree of tolerance to one or more metals. 

Seed Production 

As indicated earlier, seed production is one of the earliest selection criteria 
applied to forage grasses, both unconsciously and using methodical approaches. 
Yet it remains probably the most poorly documented of all selection criteria. It is 
one of the more contentious selection criteria, drawing wide opinions from grass 
breeders as to the attention to which it should be given compared to forage traits 
(Barker & Kalton, 1989; Vogel et aI., 1989). Kalton et al. (1996, see Chapter 13) 
discuss the problems and potentials associated with selection for improved seed 
production. Other authors (SIeper & West, 1996; Vogel et aI., 1996; Carlson et 
aI., 1996; Jung et aI., 1996; Berg et aI., 1996; Wedin & Huff, 1996; Asay & 
Jensen, 1996a, b; Boe & Delaney, 1996; see Chapters 15-24) discuss seed pro
duction practices and problems for individual species. We summarize the docu-
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mented progress in breeding cool-season forage grasses for improved seed pro
duction. 

Lodge (1993) conducted three generations of pedigree selection to identify 
wild accessions of two wallaby grasses which might have potential for commer
cialization. High seed yield per inflorescence and compact inflorescence were 
the principal selection criteria. Both traits were markedly improved over the av
erage wild accession, leading to a cultivar release for each species (Lodge & 
Schipp, 1993). In orchardgrass, Falcinelli (1991) required only two generations 
of backcross selection to transfer seed retention from 'Marta' to 'Hallmark'. The 
Hallmark morphological phenotype was almost completely recovered, but with 
seed retention nearly equal to Marta, leading Falcinelli (1991) to conclude that 
seed shattering is controlled by a single partially or completely dominant gene. 
One cycle of selection for increased seed retention in perennial ryegrass had little 
effect on total seed production, but delayed seed shattering and increased 1000-
seed weight at maturity (Hides et aI., 1993). Selection for earliness or seed yield 
per se had similar effects on a perennial ryegrass population, each approximately 
doubling seed yield per plant (Ceccarelli et aI., 1981). Selection for increased 
1000-seed weight in this population was approximately half as effective at in
creasing seed yield as was selection for seed yield per se. 

Knowles (1977) conducted five cycles of selection for increased seed yield, 
quality, and fertility in intermediate wheatgrass. Selection led to 89% higher seed 
yield, 8% higher volume weight of seed, 25% higher floret fertility index, and 
65% less lodging. There appeared to be no detrimental effects of improved seed 
production, indeed forage yield also increased by 17%. Lawrence and Ratzlaff 
(1988) selected for increased seed yield and quality along with foliage color in 
Altai wildrye. Combined selection for seed yield and blue foliage color approxi
mately doubled seed yield during six cycles of mass selection. Increases in seed 
yield were considerably smaller when selected in conjunction with green or blue
green foliage color. Two cycles of polycross selection for seed yield of smooth 
bromegrass led to a 40% increase in seed yield and a 15% increase in forage 
yield (Knowles et aI., 1970). 

Response to two cycles of selection for increased panicle seed yield varied 
among four orchardgrass germplasm sources, ranging from 4 to 18% per cycle 
for multilocation selection (convergent-divergent; Lonnquist et aI., 1979) and 1 
to 18% per cycle for single-location selection (Casler et aI., 1993). The above 
selection protocols were carried out at four locations completely removed from 
normal orchardgrass seed production environments. When the original and se
lected populations were grown in Oregon, multilocation selection was superior 
to single-location selection, resulting in increased plot seed yield for two of the 
four germplasm sources, M02 and WO 11 (Barker et aI., 1993). Apparently multi
location selection resulted in populations with greater genetic diversity than did 
single-location selection, giving them a greater buffering capacity and ability to 
produce high seed yields across a diverse range of sites. Seed yield of the M02 
and WO 11 C2 populations also exceeded that of all eight check cultivars. Matu
rity was unconsciously shifted toward lateness in both of these populations (Barker 
et aI., 1993), refuting the dogma present in the seed industry that lateness is al
ways correlated with lower seed production. 
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Forage Nutritional Value 

Development of an in vitro procedure for rapid, repeatable, and relatively 
inexpensive evaluation offorage digestibility (Tilley & Terry, 1963) is the single 
most important event in the evolution of cool-season forage grass selection crite
ria. Genetic variability exists for digestibility or related traits within nearly all 
economically important cool-season forage grass species (Hacker, 1982; Mar
ten, 1989; Buxton & Casler, 1993). Despite this knowledge, reports of actual 
genetic progress in breeding for improved forage digestibility of cool-season for
age grasses are limited to orchardgrass (Breese & Davies, 1970; Saiga, 1983; 
Rind & Carlson, 1988), perennial ryegrass (Humphreys, 1989b), smooth brome
grass (Ehlke et aI., 1986; Carpenter & Casler, 1990), and timothy (Surprenant et 
aI., 1990). Successful selection for crude protein concentration resulted in posi
tive correlated selection responses for in vitro digestibility (Clements, 1969). 
Divergent phenotypic selection for neutral detergent fiber concentration, the single 
best laboratory predictor of intake potential (Van Soest, 1982), was successful in 
smooth bromegrass (Carpenter & Casler, 1990) and reed canarygrass (Surprenant 
et aI., 1988). 

There are two principal reasons for this small number of studies reporting 
genetic improvements. First, while laboratory procedures are less expensive than 
actual animal evaluations, they are more expensive than most field-trait selection 
criteria. Limited funds or access to specialized laboratories prevents many breeders 
from using these selection criteria. Near-infrared reflectance spectrophotometry 
may be used to reduce the cost and time spent in the laboratory and increase the 
efficiency of selection in some cases (Reich & Casler, 1985). Second, negative 
correlations between forage yield and nutritive value have been frequently re
ported and may serve as a deterrent to forage nutritional value breeding efforts 
(Van Bogaert, 1977). However, genetic improvements in forage digestibility do 
not necessarily lead to reduced forage yield (Casler & Ehlke, 1986). 

Eight experiments conducted on smooth bromegrass over a period of 20 yr 
at numerous locations (Collins & Drolsom, 1982; Casler et aI., 1989; Carpenter 
& Casler, 1990; and five other studies by Casler et aI., 1989) suggested that G x 
E interactions for forage nutritive value traits (involving locations, years, and 
harvest dates) are generally unimportant. Two cycles of phenotypic selection, 
using single-location testing, has led to a 2.8 g kg-1 increase in in vitro dry 
matter digestibility (IVDMD) of smooth bromegrass forage, when IVDMD was 
measured at different locations or in different years (Ehlke et aI., 1986; Carpen
ter & Casler, 1990). Genotype x year interactions appear to be important sources 
of variation in reed canary grass (Hovin et aI., 1976), tall fescue (Nguyen et aI., 
1982), and quackgrass (Greub et aI., 1986). The relationship between genotype 
or population rankings in spaced plants and sward plots is relatively high in smooth 
bromegrass (Ugherughe et aI., 1980; Ehlke et aI., 1986; Carpenter & Casler, 1990) 
and perennial ryegrass (Humphreys, 1989b). In these species, breeding for im
proved forage nutritive value with minimal or no replication of individual plants 
has been successful. 

In species for which individual plants may have heading and anthesis dates 
up to 4 wk apart, such as in orchardgrass, digestibility is negatively correlated 
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with earliness when plants are harvested on an individual date (Frandsen, 1986). 
Conversely, digestibility is positively correlated with earliness when plants are 
harvested according to a specific stage of maturity (Christie & Mowat, 1968; 
Davies, 1976). In either case, genetic changes due to selection for high digest
ibility would likely be due to accumulation of alleles for early or late maturity, 
rather than digestibility per se. Research on perennial ryegrass has shown an early 
maturing cultivar to have higher forage nutritive value than a late-maturing culti
var under a high stocking rate of dairy cows, but the effect was reversed under a 
low stocking rate (Gately, 1984). Thus, genetic changes in maturity can be used 
to more efficiently exploit a range of pasture management systems. Some au
thors have suggested using covariance analysis to adjust family or plant means to 
a constant level of maturity prior to selection, in cases where selection is based 
on replicated units (Frandsen, 1986; Buxton et aI., 1987; van Santen & Casler, 
1990). 

Humphreys (1989c) has shown the early maturing perennial ryegrass culti
var, Aurora, to be a source of high WSC concentration and in vitro digestibility. 
In segregating progeny of crosses between Aurora and late-maturing cultivars, 
WSC concentration could be increased independent of changes in maturity 
(Humphreys, 1989b). Water soluble carbohydrate concentration also appears to 
be positively related to in vitro digestibility in tall fescue (I.A. Balasko, 1991, 
unpublished data). High- and low-WSC tall fescue clones (183 vs. 23 g WSC 
kg-1 dry matter) differed by at least 59 g kg-1 in IVDMD for all fermentation 
times between 3 and 48 h. 

There is very little data to suggest what effect selection for increased 
IVDMD or other measures of forage nutritive value may have on adaptive traits 
such as pest or stress resistance. Buxton and Casler (1993) reviewed this subject 
and suggested that: (i) long-term unconscious selection has led to decreased nu
tritive value of forage crops due to emphasis on yield and vigor traits, and (ii) 
increased forage nutritive value, if accomplished by reducing the concentration 
of cell wall constituents such as lignin or phenolics, may lead to reduced pest 
resistance. On the other hand, selection for reduced leaf cellulose concentration 
or tensile strength, both associated with increased IVDMD, led to increased tol
erance to freezing and drought (Lancashire et aI., 1977; Silcock & Wilson, 1982; 
Wilson, 1981). Silcock and Wilson (1982) speculated that greater cell wall flex
ibility may be partially responsible for both increased drought and freezing toler
ance. 

The relative ease with which digestibility of some forage crops can be in
creased by selection suggests that a considerable amount of additive genetic varia
tion controls this trait. Genetic studies support this conclusion in a population of 
tall fescue (Nguyen et aI., 1982), a population of reed canarygrass (Hovin et aI., 
1976), and three populations of smooth bromegrass (Ross et aI., 1970; SIeper et 
aI., 1973; Ehlke et aI., 1986). There also is strong evidence for nonadditive gene 
action controlling traits related to digestibility in populations of smooth brome
grass (Tan et aI., 1978), reed canarygrass (Marum et aI., 1979), and perennial 
ryegrass (Hayward & Abdullah, 1985; Humphreys, 1989b). 

The ultimate test of a breeding program with improved forage nutritive 
value as its goal is in animal performance of the selected populations. A litera-
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ture review identified only three references to animal performance trials address
ing this subject in cool-season forage grasses, the small number presumably due 
to their greater expense. Progenies of two smooth bromegrass synthetics selected 
for divergent IVDMD differed by 65 g kg- l in IVDMD averaged over 2 yr 
(Kamstra et al., 1973). Hay produced on four 0.135-ha plots planted to each syn
thetic was fed to wether lambs over a 47-d period. Animal weight gains were 
32% greater for the high-IVDMD synthetic, than for the low-IVDMD synthetic 
(62 vs. 47 g d- l , 2.9 vs. 2.2 kg over 47 d). 'Badger' smooth bromegrass was 
selected for increased IVDMD and had 20 g kg- l higher IVDMD than 'Rebound', 
the second highest cultivar for IVDMD averaged over six location-years in Wis
consin and Iowa field trials (Casler & Drolsom, 1992, and unpublished data). In 
a set-stocking grazing trial, Badger averaged 11 % higher sheep weight gains than 
Rebound (0.21 vs. 0.19 kg d- l , 25 vs. 23 kg over the 117-d grazing season). 
Stocking rates were 45 animals per hectare from 15 May through 3 June and 29 
animals per hectare from 12 June through 24 September and forage availability 
was equal for the two cultivars (Casler & Drolsom, 1992, and unpublished data). 
'Manska' intermediate wheatgrass (Mandan I 2781) was selected for increased 
IVDMD and had 11 and 25% higher average daily gain than two standard culti
vars (Moore et al., 1990). 

Munro and Walters (1986) summarized three ryegrass feeding trials in which 
cultivars differed by 12 to 30 g kg- l in digestibility on offer. In each case, animal 
performance (dry matter intake and/or weight gains) was higher for the high
digestibility cultivar, ranging from a 4 to 35% increase. Although these studies 
are limited in both scope and duration they provide the only documentation that 
plant breeding efforts can improve animal performance from cool-season forage 
grasses. There are other documentations of this phenomenon in warm-season 
grasses (Anderson et al., 1988; Burton & Monson, 1988; Shoop et al., 1976). 

Animal evaluation of forage nutritive value are too expensive to use in 
early stages of breeding programs, but may be useful in discriminating among 
genotypes or families differing in palatability. The strong correlations between 
palatability and indole alkaloid concentration in reed canarygrass (Simons & 
Marten, 1971) suggest that either animal preference or a laboratory analysis would 
be an appropriate selection criterion for low alkaloid concentration. There also is 
some evidence that the most palatable lines derived from ryegrass x fescue hy
brids also are highest in water concentration and in vitro digestibility (Berg et al., 
1979; Buckner et al., 1979). 

Orchardgrass synthetics that produced relatively few reproductive tillers 
were developed with the idea that reduced stem development would enhance 
forage nutritive value of the crop (Berg et al., 1981). Panicle production was 
reduced by up to 80% in the northwest USA and 58% in Washington (Table 
14-4). Large genetic variances within the Syn Band Syn C suggest they have 
potential to provide genotypes with good Washington seed production, but low 
panicle production in the northeast USA and similar environments (Hovin et al., 
1966). Although forage yield of Syn Band Syn C was not reduced by suppressed 
panicle production, results are conflicting on laboratory measures of forage nu
tritive value (Berg et al., 1981; Sullivan et al., 1962). Berg et al. (1981) sug
gested the need to evaluate sparse-flowering orchardgrass synthetics for animal 
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Table 14-4. Panicle numbers and seed yields of orchardgrass synthetics differing in 
reproductive stem frequency. 

Panicle number 

Synthetic Vermontt Pennsylvania t 

m- 2 

A 131 170 
B 76 85 
C 46 35 

t Adapted from Berg et ai. (1981). 
:I: Adapted from Hovin et ai. (1966). 

Washington:l: 

plant -1 

116 
49 
63 

Seed yield 
Washington:l: 

g plant- 1 

50 
21 
32 

performance potential. These populations may be potential germplasm for 
orchardgrass pastures, reducing wasted dry matter that often results from excess 
stem production when stocking rates are too low during spring growth. 

Conclusions 

Numerous selection criteria have been used in the development of improved 
cool-season forage grass germplasm. Additive genetic variability exists for traits 
that allow development of distinct pasture or hay-type grasses and of mixtures 
with perennial legumes. Although cool-season forage grasses suffer from para
sitism of numerous disease organisms, sources of resistance exist to most of these 
organisms. Breeding for increased forage yield is a slow and expensive process. 
There is little documentation of improvements by selecting for forage yield per 
se. Changes in certain morphological or physiological traits may lead to increased 
forage yield, but usually induce serious genotype x harvest management interac
tions. There is a wealth of genetic variability controlling tolerance to various 
abiotic stresses, much of which can be readily identified by study of edaphic 
factors and human disturbances. Some of this variation has been useful in 
bioremediation of disturbed sites. Recent laboratory technologies have allowed 
large and rapid improvements in forage nutritional value without sacrifices in 
forage yield, and there is strong evidence that these efforts can improve animal 
performance. 

BREEDING PROCEDURES 

Breeding procedures used in cool-season forage grass improvement are 
generally not unique to this group of plants. They are usually adaptations of pro
cedures commonly used in cereal and other crop species. Selection of a proce
dure to accomplish a breeding objective is usually based on knowledge of the 
species being modified, and the amount and type of genetic variation that can be 
assessed by the breeder. Fiscal, physical, and time constraints imposed on the 
breeder also influence choice of breeding procedures. 

Most cool-season forage grasses are outcrossing, polyploid, perennial, and 
can be propagated vegetatively (Hanson & Carnahan, 1956; Hovin, 1980; SIeper, 
1987). Due to their outcrossing nature, they exist in the wild as random or pseu-
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dorandom mating populations, and improved cultivars are usually maintained 
and marketed as random mating populations (Hayward, 1988). Because they are 
perennial, individual plants of most species can be maintained for several years, 
eliminating the need for selfmg or inbred line development in some breeding 
procedures. The ability of the breeder to vegetatively propagate most cool-sea
son forage grasses also eliminates the need for inbred development in some pro
cedures and provides unique opportunities for modification and adaptation of 
breeding procedures to these species. Although many cool-season forage grasses 
are polyploid, they often behave as diploids and in practice are normally handled 
as such (Hanson & Carnahan, 1956). 

Because forage grasses have been cultivated and subjected to unconscious 
and methodical selection for a relatively short time, and because they generally 
have a wide geographic range (see Chapters 15-24), considerable genetic varia
tion is present in most species. Furthermore, due to the heterogeneous nature of 
the populations, the heterozygous state of individuals, and the reliance on asexual 
propagation in the wild (tillering, rhizomes, etc.) additive gene action generally 
predominates (Breese & Hayward, 1972). Considerable genetic variation has been 
collected for some species and is preserved in numerous national and interna
tional collections where it is readily available to breeders (Williams, 1984; Tyler 
et aI., 1987; Natl. Res. Council, 1991). Maintaining genetic variation in working 
populations, as well as avoiding inbreeding depression, which is severe in most 
cool-season forages (Hanson & Carnahan, 1956), is a concern in most breeding 
programs. Generally, effective population size is kept at 50 individuals or more 
(Vogel et aI., 1989). 

Breeding procedures used for cool-season forages range from primitive 
ecotype collection to genetic manipulation at the molecular level. Ecotype col
lection produced many of the cool-season forage grasses in widespread use to
day. Examples include 'Kentucky 31' tall fescue (Fergus & Buckner, 1972), 'Clair' 
timothy (Buckner, 1962), 'Lincoln' smooth bromegrass (Hein, 1955), and 
'Marshall' Italian ryegrass (Arnold et aI., 1981). 'Grasslands Matua' rescuegrass 
was developed by increasing selected plants from a single high-performing ac
cession, selected from among many accessions evaluated in New Zealand 
(Rumball, 1974). It has demonstrated potential utility as a forage crop in Oregon 
(Ballerstedt et aI., 1990) and Pennsylvania (Jung & Shaffer, 1990). In addition to 
ecotypes and accessions from plant collections, existing cultivars serve as source 
material in most cool-season grass breeding programs. In more mature cool-sea
son grass breeding programs, elite plants may be kept for many years in a source 
nursery for later use in developing popUlations with particular traits (SIeper, 1987). 

Recurrent Selection 

Recurrent selection is a cyclical population improvement method for in
creasing the frequency of favorable alleles and superior genotypes (Hallauer & 
Miranda, 1981). Mass selection and phenotypic selection are by far the most 
common recurrent selection methods employed in cool-season forage grass breed
ing. Mass selection is described by Poehlman (1983) as "a selection procedure in 
which individual plants with desirable traits are chosen, and the seed harvested 
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from them is bulked to grow the following generation." It is usually based on 
phenotypic selection, and pollination is not controlled. Thus, effective popula
tion size is maintained at some level exceeding the number of selected individu
als with this procedure (Falconer, 1989). This method is used widely in cool
season forage grass breeding and has produced cultivars such as AU Triumph 
tall fescue (Pedersen et aI., 1983). It also is used by most breeders and founda
tion seed programs to keep cultivars true-to-type by eliminating off-types. 

Phenotypic selection differs from mass selection in that some attempt is 
generally made to limit pollination to only those individuals selected to represent 
the next generation. This is facilitated in situ, by removing inflorescences from 
nonselected individuals prior to anthesis (Reich & Casler, 1985) or ex situ, by 
taking vegetative propagules from each selected individual. Vegetative propagules 
may be transplanted into polycross blocks or may be placed in water or nutrient 
solution prior to anthesis. The latter approach is one of the main restrictions in 
the Recurrent Restricted Phenotypic Selection (RRPS) system designed by Bur
ton (1974). Its other restrictions were the use of grid selection to help control 
environmental variation (Gardner, 1961) and the use of self-incompatible 
germplasm to reduce the incidence of selfing. Adaptations of the RRPS system 
have been applied to numerous species and selection criteria. 

Marshall and Sli~kard (1972) compared one cycle each of mass selection 
and phenotypic selection for increasing seed set and seed weight of Russian 
wildrye. Phenotypic selection resulted in greater gains than mass selection: 8% 
higher for seed set, 2% higher for seed weight, and 18% higher for seed yield per 
plant. However, phenotypic required an additional year for each cycle (3 vs. 2 
yr), more than negating its advantage in pollen control in this study. Vogel and 
Pedersen (1993) predict that the theoretical superiority of phenotypic selection, 
in particular RRPS, over mass selection should make the latter obsolete. How
ever, in view of Marshall and Slinkard's (1972) results, and the gains made by 
many breeders using mass selection (reviewed under "Selection Criteria"), it seems 
that mass selection will continue to hold a place in cool-season forage grass breed
ing programs, depending on the selection criteria and objectives of the breeder. 

Because perennial plants can be maintained for several years, individuals 
also can be selected on the basis of their progeny performance (genotypic selec
tion) and directly intermated following progeny evaluation. Both genetic and 
cultural factors influence the breeder's decision to use phenotypic or genotypic 
selection. Generally, phenotypic selection is used for highly heritable traits and 
genotypic selection is used for less heritable traits (Hallauer & Miranda, 1981). 
Progeny testing of individual families or lines is common in genetic studies of 
cool-season forage grasses and is used in nearly all private breeding programs, 
but is relatively uncommon in published recurrent selection programs. 

Vogel and Pedersen (1993) describe three systems for conducting progeny 
test selection in forage grasses: half-sib progeny test (HSPT), between and within 
family selection (B&WFS), and recurrent multistep family selection (RMFS). 
The latter differs from B& WFS only in that two populations are produced from 
each cycle, one representing all selected genotypes and used to advance to the 
next cycle, and the second representing a superior subset of genotypes for testing 
as a potential cultivar. They argue that HSPT is the least efficient of all breeding 
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systems for forage grasses, and that, in most prior applications, failure to make 
genetic progress was due to linkage and/or Hardy-Weinberg disequilibrium, re
sulting in family variation due, in part, to nonadditive genetic effects. Similarly, 
Breese and Hayward (1972) argued that progeny test selection may squander 
additive genes, making dominance and epistasis more important in selected prog
enies compared to their parents. Generally, genotypic selection programs require 
a longer cycle time than phenotypic selection. 

One cycle of HSPT selection (7 yr) was as effective as a combination of 
one cycle of mass selection plus one cycle of phenotypic selection (a total of 6 
yr) for increasing seed yield of intermediate wheatgrass (Knowles, 1977). All 
selections were made in the 2nd or 3rd yr after establishment and Knowles warned 
that this delay is necessary to obtain accurate estimates of plant or family perfor
mance. Nevertheless, HSPT cycle time could be reduced to 5 yr, if selections are 
intercrossed during the winter following the 3rd yr of evaluation, as Knowles 
(1977) did in the phenotypic selection protocol, and if greenhouse seed produc
tion is adequate for progeny testing. After one cycle of selection for higher for
age yield in perennial ryegrass, phenotypic selection led to a 9 and 54% higher 
yield than HSPT, while B&WFS led to 4 and 25% higher yield than HSPT, for 
two evaluation experiments (Van Dijk, 1979). 

Synthetic Cultivars 

A synthetic cultivar is defined as "the advanced generations of open-polli
nated seed mixtures of a group of strains, clones, or inbreds, or of hybrids among 
them" (Poehlman, 1983). According to Allard (1960), "the key point of distinc
tion between synthetic cultivars and cultivars developed by mass selection ... lies 
in the way the constituent genotypes are chosen." Genotypes are selected prima
rily for high general combining ability (the ability to pass on favorable alleles to 
their progeny when mated to other genotypes). They are then intermated in all 
possible combinations and maintained as random mating popUlations in succeed
ing generations. Heterosis or hybrid vigor is theoretically captured with the loss 
of only lin of the heterosis in the Syn2 generation where n = the number of par
ents in the synthetic cultivar. According to the Hardy-Weinberg rule, if genera
tions are advanced by random mating, there should be no further loss of hetero
sis (Allard, 1960). In practice, inbreeding depression and/or genetic instability 
can contribute to a decrease in performance in advanced generations (Hayward 
& Abdullah, 1985). 

The above description of synthetics is accurate for crops in which signifi
cant sources of heterosis can be identified. However, cultivars described as syn
thetic also are produced in cool-season forage grasses where predominantly ad
ditive genetic variance is expected. Breese and Hayward (1972) define synthetic 
cultivars as populations "produced by hybridizing in all possible combinations a 
number of selected genotypes, and thereafter maintained by random mating in 
isolation (over a limited number of generations). The stated aims are to increase 
the frequency of genes with favorable expression in particular characters while 
avoiding inbreeding depression." In practice, such synthetic cultivars are usually 
developed from a small number of parents (8-12) while a cultivar developed 
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using mass selection may be based on an effective population size of> 100 indi
viduals. 

Interspecific and Intergeneric Hybridization 

Hybridization between plant species has occurred in nature, especially 
among the grasses, as an important mechanism of plant evolution. With the dis
covery of the colchicine technique in 1937 for inducing polyploidy (amphip
loids) in hybrids, plant breeders have attempted to use amphiploids to break down 
perceived yield barriers by creating more variability within a species (Dewey, 
1980). 

In many cases, hybrids between species are male and female sterile. In 
nature, polyploids are most likely the result of an unreduced (2n) gamete. For 
example, a 2n egg from one species is fertilized by haploid (n) pollen from an
other species resulting in a triploid hybrid. If this triploid hybrid produces a 2n 
egg which is fertilized by 2n pollen from the same plant, the resulting plant is an 
allopolyploid (Harlan & deWet, 1975). Production of these 2n gametes often 
results from failure of the first or second meiotic division. Successful hybridiza
tions that occur in nature usually result from crosses between races, ecotypes or 
cytotypes. Wide crosses that are successful, usually require in vitro culture pro
cedures and/or colchicine-doubling. It was demonstrated by van Santen et a1. 
(1991) that 2n eggs and 2n pollen were formed in orchardgrass, based on the 
recovery of tetraploid progeny from 2x-4x and 4x-2x crosses. Also, cytological 
analyses of diploid crested wheatgrass indicated that 2n pollen was produced via 
restitution of the second meiotic division (Ray & Tokach, 1992). 

The most prevalent method of obtaining fertility in interspecific and inter
generic hybrids of cool-season grasses is colchicine doubling to inhibit spindle 
fiber formation. The lack of spindle fiber formation prevents division from oc
curring, resulting in a cell with a doubled number of chromosomes (Singh, 1993). 
Variation can result from colchicine treatment as demonstrated in perennial 
ryegrass (Hague & Jones, 1987; Francis & Jones, 1989). 

Breeding efforts that have concentrated on improving cool-season grasses 
and understanding their phylogeny through hybridization and colchicine dou
bling have focused on the ryegrass-fescue complex (Lewis, 1983; Thomas & 
Humphreys, 1991; Van Bogaert, 1975), and members ofthe Triticeae tribe (Asay, 
1992). The tall fescue cultivars Kenhy (Buckner et aI., 1977) and Johnstone 
(Buckner et aI., 1983) were derived from hybrids between Italian ryegrass and 
tall fescue (Fig. 14-4); the crested wheatgrass cultivar Hycrest (Asay et aI., 1985) 
was derived from hybrids between the induced tetraploid, fairway crested wheat
grass, and the natural tetraploid, standard crested wheatgrass; and the wheatgrass 
cultivar NewRy (Asay et aI., 1991) was derived from hybrids between quackgrass 
and bluebunch wheatgrass. 

In perennial ryegrass, a stable cytoplasmic male sterile type is available as 
a result of crossing an F4 hybrid of perennial ryegrass x Italian ryegrass with 
meadow fescue (Wit, 1974). This line has been used in a breeding program aimed 
at the production of Frhybrid seed (Creemers-Molenaar et aI., 1992). Similarly, 
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Fig. l~. Inflorescences from: a) Italian ryegrass, b) tall fescue, c) Italian ryegrass x tall fescue 
hybrid, d) colchicine-doubled Italian rye grass x tall fescue amphiploid and e) one of the Kenhy 
tall fescue clones derived from the amphiploid. 

the orchardgrass cultivar Hawk was developed by hybridization using a cyto
plasmic male sterile line. 

Conclusions 

Few breeding procedures applied to cool-season forage grasses are unique 
to this group of species. Because the history of domestication and breeding ef
forts on annual grain crops are much older and broader than perennial forage 
crops, most new procedures derive from research on annual grain crops. Never
theless, forage breeders have used novel characteristics of cool-season forage 
grasses (perenniality, multiple inflorescences, and vegetative propagation) to cre
ate more efficient and effective modifications of existing procedures. These pro
cedures are extremely effective at increasing the frequency of favorable alleles 
and superior genotypes in populations. The greatest weakness of current cool
season forage grass breeding procedures is the low amount of nonadditive ge
netic variation utilized in selection programs. Development of effective and eco
nomical mechanisms for: (i) hybrid seed production, (ii) large-scale vegetative 
propagation or micropropagation of superior clones, or (iii) somatic embryogen
esis as a means of synthetic seed propagation (Gray & Purohit, 1991) may revo
lutionize cool-season forage grass breeding in the same way that hybrids revolu
tionized maize and bermudagrass breeding. 
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IN VITRO AND MOLECULAR TECHNOLOGIES 

When interspecific crosses have been used to create new genetic variabil
ity, it often has been necessary to perform embryo rescue and to double the chro
mosome complement of the interspecific hybrid with colchicine to obtain plants 
that have reproductive fertility. More recently, inflorescence culture and proto
plast fusion have expanded the possibilities for wide hybridization. Additional 
means of expanding variation are available through tissue culture (somaclonal 
variation), anther culture, and plant transformation. Selection can be facilitated 
by use of isozyme and/or DNA markers. In situ hybridization can be used either 
to: (i) determine genome donors in hybrid derivatives or (ii) locate DNA markers 
to a particular chromosome. 

Tissue Culture 

The tissue culture techniques discussed in this section have been used suc
cessfully with one or more cool-season grasses. These techniques include em
bryo rescue, meristem tip culture, inflorescence culture, and anther culture. The 
objective of this research is to: (i) expand the capabilities of the plant breeder, 
(ii) create new variablity, and/or (iii) make breeding more efficient. 

Embryo rescue, the most utilized technique, is used when an incompatible 
relationship exists between the hybrid embryo and endosperm, or seed viability 
is questionable. Successful hybridizations of cool-season grasses that utilized 
embryo rescue include tall fescue x Italian ryegrass (Eizenga & Buckner, 1986); 
tall fescue x orchardgrass (Matzk, 1981), Canada wildrye x rye (Park & Walton, 
1989a), Pseudoroegneria cognata (Hackel) A. Love x Psathyrostachys 
huashanica Keng, P. cognata x beardless wheatgrass (Wang, 1978), and barley 
x slender wheatgrass (Aung, 1991). 

Meristem tip culture can be used either to vegetatively propagate or elimi
nate viruses from cool-season forage grasses. Dale (1977a) successfully regener
ated timothy, orchardgrass, meadow fescue, red fescue, tall fescue, Italian ryegrass 
and perennial ryegrass using meristem tip culture. He also demonstrated with 
Italian ryegrass that (i) the meristem tips could be stored in vitro using cold stor
age for a period of 3 yr (Dale, 1980) and (ii) ryegrass mosaic virus could be 
eliminated (Dale, 1977b). 

In inflorescence culture, the immature inflorescence is removed and plated 
on a medium containing auxin, to encourage regeneration ofplantlets. Cool-sea
son grass species from which plantlets have been regenerated via inflorescence 
culture include tall fescue (Dale & Dalton, 1983; Eizenga & Dahleen, 1990); 
Italian and perennial ryegrasses (Creemers-Molenaar et al., 1988); meadow fes
cue, timothy, and orchardgrass (Conger & McDonnell, 1983; Dale & Dalton, 
1983); Canada wildrye (Park & Walton, 1989b); and Kentucky bluegrass (van 
der Valk et al., 1988). 

Inflorescences of hybrids have been cultured in an attempt to obtain am
phiploids. Inflorescences of Italian ryegrass x tall fescue (Kasperbauer et al., 
1979; Rybczynski et al., 1983); Wimmera ryegrass x tall fescue (Rybczynski et 
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al., 1983); and slender wheatgrass x Canada wildrye (Kumar & Walton, 1992) 
hybrids have been successfully cultured for this reason. 

Another reason for attempting to obtain regeneration from inflorescence 
culture is to obtain haploid plants. Haploids are useful, first, to unmask undesir
able recessive genes and enable the forage grass breeder to make selections more 
quickly. Second, inbred lines may be obtained more quickly by chromosome 
doubling of the haploid plants. Third, haploids can be used to more accurately 
determine the genome constitution ofthe polyploid species. Kasperbauer (1990a) 
was successful using inflorescence culture to obtain haploid tall fescue plants 
which he suggested developed from anthers. No other haploids of tall fescue 
have been reported to date. Based on mitotic analyses, the tall fescue haploids 
were doubled using inflorescence culture (Kasperbauer, 1990b). 

Haploid plants have been obtained for some of the cool-season grasses by 
culturing individual anthers (Fig. 14-5). These plantlets most likely were regen
erated from pollen cells . Reports of haploid or aneuhaploid regenerants include 
perennial ryegrass (Olesen et al., 1988; Boppenmeier et al., 1989), Italian ryegrass 
(Boppenmeier et al., 1990), tall wheatgrass (Wang et al., 1991; Niu et al., 1991), 
intermediate wheatgrass, and crested wheatgrass (Niu et al., 1991). Recently, six 
anther culture-deprived haploids of perennial ryegrass were spontaneously chro
mosome-doubled (Madsen et al., 1993). Some of the selfed offspring showed a 
significant increase in self-fertility. 

Use of haploids to determine the genome constitution of the polyploid grass 
species was demonstrated with tall fescue by Eizenga and Kasperbauer (1985). 
The low pairing between the three genomes indicated tall fescue has three dis
tinct genomes and is an allohexaploid species. 

Somaclonal variation (Larkin & Scowcroft, 1981) describes the genetic and 
chromosomal changes that occur as a result of tissue culture. Reports of somaclonal 
variation in cool-season species include changes in chromosome number and struc
ture in regenerants from Italian ryegrass (Ahloowalia, 1976), perennial ryegrass 
(Ahloowalia, 1976), tall fescue (Reed & Conger, 1985; Eizenga, 1989; Dahleen 
& Eizenga, 1990) and Italian ryegrass x tall fescue hybrids (Humphreys & Dalton, 
1992). Skipp and White (1988) showed a range of resistance to crown rust in 
perennial ryegrass regenerants from inflorescence culture. Additionally, isozyme 
variation was reported in tall fescue regenerants (Dahleen & Eizenga, 1990; 
Eizenga & Cornelius, 1991) and Italian ryegrass x tall fescue regenerants 
(Humphreys & Dalton, 1992). 

Protoplast Fusion and Transformation 

Somatic cell fusion involves hybridizing protoplasts of two different spe
cies and obtaining plantlets from the fused protoplasts. It is the least developed 
method for obtaining hybrids, but has the potential to broaden the range of spe
cies that can be hybridized. Protoplasts have been obtained from tall fescue 
(Dalton, 1988a, b; Takamizo et al., 1990), perennial ryegrass (Dalton, 1988a,b; 
Creemers-Molenaar et al. , 1989), Italian ryegrass (Dalton, 1988a), orchardgrass 
(Hom et al., 1988a), Kentucky bluegrass (van der Valk et al., 1988), redtop (Asano 
& Sugiura, 1990), and meadow fescue (Wang et al., 1993). Basal leaf tissue, 
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Fig. 14-5- Development of tall wheatgrass anther culture tissue: a) anther locule filled with em
bryoids and calli, and b) direct regeneration of a plantlet from an anther (reprinted from 
Marburger & Wang, 1988). 

immature inflorescences, immature embryos and seed have been used as explants 
for obtaining callus, which is used to develop suspension cultures from which 
protoplasts are obtained. Green and/or albino plantlets of the aforementioned spe
cies have been regenerated from protoplasts, but only the meadow fescue plants 
were reported to be fertile. Also, green plants have been obtained from somatic 
hybrids of tall fescue x Italian ryegrass (Takamizo et aI., 1991). 
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Reports of genetic transformation involve the incorporation of desirable 
gene(s) into a plant host often utilizing a vector such as a plasmid, particle gun, 
electroporation, or microinjection. The first successful transformation of a cool
season forage grass was incorporation of the single gene trait, hygromycin resis
tance, into orchardgrass (Hom et aI., 1988b; Conger, 1991). Orchardgrass proto
plasts were isolated from embryogenic suspension cultures, hygromycin resis
tance was incorporated by direct uptake of a DNA plasmid containing the gene, 
and whole plants were regenerated from the protoplasts. Unfortunately, these 
plants were low in vigor, could not be induced by flower, and eventually died. 
More recently, the same hygromycin resistance gene and a phosphinothricin 
acetyltransferase gene were introduced into tall fescue (Wang et aI., 1992) using 
procedures similar to those reported for orchardgrass. Integration of these genes 
into the tall fescue genome was verified by Southern blot hybridization and in 
situ hybridization. Expression of the genes was confirmed by an enzyme assay 
for hygromycin or treatment with phosphinothricin. Fertility of the transgenic 
plants and transmission of the introduced genes is being determined. Using 
electroporation, Ha et aI. (1992) incorporated the hygromycin resistance gene 
into tall fescue. These successes indicate that it should be possible to incorporate 
single gene traits such as pest and herbicide resistance into cool-season grass 
species. 

The transfer of multi genic traits will be more difficult because of the num
ber of genes that would need to be transferred. Work that is being done with 
DNA markers will make it possible to identify the location of traits that are mul
tigenic. This should make it possible to transform or move multigenic traits. In 
the cool-season forage grasses, the multigenic traits of most interest would prob
ably be forage quality or adaptation to a broader range of environments (Hanna 
& Hill, 1985). 

Genetic Markers 

In most cool-season forage species there are very few genetic markers but, 
in the past 20 yr, work has progressed toward development of isozyme markers. 
More recently, the development of DNA-based markers which utilize the tech
nology that is used to reveal DNA-based polymorphisms appears to be even more 
useful. 

In some cases, plant breeding is enhanced by the use of isozyme markers 
that can be used to identify desirable traits if there is linkage between a specific 
trait and an isozyme marker. This was illustrated in perennial ryegrass where 
there was linkage between the PGI-2 (phosphoglucoisomerase) isozyme and the 
S locus for self-incompatibility (Cornish et aI., 1980). Hayward (1992) evaluated 
the effect of isozyme selection on forage yield and flowering time in perennial 
ryegrass. His work suggested a possible linkage of quantitative trait loci for wa
ter soluble carbohydrates to the PGI-2 locus and heading date to the ACP-l (acid 
phosphatase) locus. 

The other major uses of isozymes are for clonal identification, identifying 
hybrids, and distinguishing cultivars (Sanders & Barker, 1988). Specific clones 
can be identified based on given isozyme genotypes of the clones. Hybrids can 
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be determined from the genotypes of the parents that result in specific genotypes 
for the hybrid progeny. For example, Eizenga et ai. (1990) studied the parents, 
hybrids, and amphiploids of three different tall fescue x giant fescue crosses for 
three isozyme phenotypes. A unique isozyme phenotype was shown for the indi
vidual parents and these corresponded to the isozyme phenotypes of the hybrids 
and amphiploids. Using four different isozymes, 15 cultivars of perennial ryegrass 
and six cultivars ofItalian ryegrass was distinguished (Nielsen et aI., 1985). Simi
larly, 16 of the 22 Kentucky bluegrass cultivars evaluated by Weedon and Emmo 
(1985) were distinguished with a combination of four different isozymes. 

Banding patterns of the seed storage proteins separated on a sodium 
dodecylsulphate polyacrylamide gel have been used to determine differences 
between various forage grass cultivars. Gardiner et ai. (1986) showed the poten
tial of this analysis using perennial ryegrass, Italian ryegrass, meadow fescue, 
tall fescue, creeping red fescue, and chewings fescue. 

The technologies for revealing DNA-based polymorphisms are the restric
tion fragment length polymorphism (RFLP) assay, which detects DNA polymor
phisms through restriction endonuclease digestions, coupled with DNA blot hy
bridizations (Tanksley et aI., 1989), and the random amplified polymorphic DNA 
(RAPD) assay which amplifies random DNA segments with a single primer(s) of 
an arbitrary nucleotide sequence(s) (Williams et aI., 1993). The RAPD assay is 
easier to perform but tends to provide only dominant markers which could be a 
disadvantage in cool-season grasses. Use of these techniques will enable the 
breeder to correlate the location of DNA markers with the location of quantita
tive trait loci or QTLs (Ratner, 1990) and some qualitative traits such as apo
mixis. Additionally, in situ hybridization can be used to determine the location 
of these DNA markers on the chromosome. 

Xu et ai. (1991) constructed a genomic DNA library for tall fescue and 
surveyed the library for RFLPs in the three Festuca species: meadow fescue (2x), 
F. arundinacea var. glaucescens Bioss. (4x) and tall fescue (6x). This work has 
permitted more accurate determination of the genome constitution of tall fescue 
and represents the preliminary step in development of a low-resolution RFLP 
map for tall fescue. Some of these heterologous genomic clones from tall fescue 
also were used to detect RFLPs in perennial ryegrass (Xu et aI., 1992). The RFLPs 
detected in perennial ryegrass were similar to those in meadow fescue and differ
entiated five perennial ryegrass cultivars (Fig. 14-6). More recently, cluster analy
sis of the RFLP data confirmed the phylogenetic relationships for tall fescue (Xu 
et aI., 1993). 

Preliminary results with ryegrass using isozymes, RFLPs, and RAPDs have 
identified two regions of the genome which have a large effect on inflorescence 
production (Hayward, 1993). In another study, using progeny from an interspe
cific hybridization between homozygous pearl millet x heterozygous elephant
grass, Smith et ai. (1993) investigated linkage of RFLP and RAPD markers with 
QTLs for complex productivity and forage quality traits. The DNA markers were 
identified for some of these traits which were linked to genes that accounted for 
more than 50% of the variation associated with the given trait. For example, 63% 
of the variation for in vitro organic matter digestibility (IVOMD) was found to 
be associated with one RFLP marker. The RFLP, RAPD, and a refmement of the 
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Fig. 14-6. Autoradiogram of HinclIII· and EcoRi-digested genomic DNA of five cultivars of pe
rennial ryegrass hybridized with the same probe. Lane I = Derby, 2 = Gator, 3 = Regal, 4 = 
Manhattan, 5 = Linn, M = molecular weight marker. This illustrates how the five varieties can 
be differentiated with a RFLP marker using two different genomic digestions. Reprinted from 
Xu et al. (1992). 

RAPD, RAPD-DGGE (He et aI., 1992), technologies had an average of 1.77,7.5 
and 10 polymorphic fragments, respectively. 

With apomictic Kentucky bluegrass, Huff and Bara (1993) used flow 
cytometry to determine the ploidy level of the progeny and RAPD markers to 
distinquish apomictic versus cross-fertilized progeny. In another study, the ploidy 
of34 Kentucky bluegrass cultivars was successfully determined by flow cytometry 
(Westerhold & Riordan, 1992). 

In situ hybridization involves hybridization of a DNA probe onto a mitotic 
(or meiotic) chromosome spread. This technique has been used to determine the 
incorporation of an introduced gene in a transgenic tall fescue plant (Wang et aI., 
1992) and to characterize unique repetitive DNA sequences from fescue and 
ryegrass species (Perez-Vicente et aI., 1992). If this technique is used in conjunc
tion with chromosome banding, it is possible to identify the chromosome to which 
the specific DNA sequence hybridizes. To use this technique, genetic stocks such 
as aneuploid lines are necessary. No trisomic or monosomic series have been 
reported in cool-season grass species, but there are scattered reports of cytoge
netic studies on aneuploid plants such as primary trisomies of perennial ryegrass 
(Juahar, 1993; Lewis et aI., 1980; Meijer & Ahloowalia, 1981), primary trisomics 
of crested wheatgrass (Imanywoha & Jensen, 1992), a primary trisomic of tall 
fescue (Jauhar, 1993), and tall fescue monosomics (Eizenga, 1989; Jauhar, 1993). 
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The crested wheatgrass trisomics have been further identified by C-banding 
(Imanywoha & Jensen, 1992). 

A adaptation ofin situ hybridization is genomic in situ hybridization (GISH) 
in which genomic DNA from each parental species is labeled differently through 
the use of (i) two different fluorochromes or (ii) biotin or fluorochrome for one 
parental DNA and no label for the other parental DNA. When the parental ge
nomic DNA is hybridized to a mitotic (or meiotic) chromosome spread of a hy
brid, amphiploid or polyploid plant, the chromosomes have the label of the pa
rental species. This technique has been demonstrated with hybrids of Italian 
ryegrass x tall fescue (Perez-Vicente et al., 1992) and tetraploid Italian ryegrass 
x meadow fescue (Thomas, 1993). The potential value ofthis technique in hy
bridization is just beginning to be exploited. 

Conclusions 

In vitro and molecular techniques have provided a means for the plant 
breeder to expand the methods of creating variability. Embryo rescue has been 
used for decades and has proved valuable in the development of new germplasm. 
Technologies that involve more advanced tissue culture methods and/or molecu
lar biology such as use of somatic hybrids via protoplast fusion and transforma
tion require further development before the methods will be useful in the devel
opment of new germplasm. There is a need for additional genetic markers in all 
cool-season forage grasses. Isozymes, RFLPs, RAPDs, or maps developed from 
a combination of these markers will aid in identification of agronomically im
portant loci. If the needed genetic stocks are available, in situ hybridization also 
can be used to locate these markers to the individual chromosomes. 
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