106 research outputs found

    Dynamics of Bacterial Communities Mediating the Treatment of an As-Rich Acid Mine Drainage in a Field Pilot

    Get PDF
    Passive treatment based on iron biological oxidation is a promising strategy for Arsenic (As)-rich acid mine drainage (AMD) remediation. In the present study, we characterized by 16S rRNA metabarcoding the bacterial diversity in a field-pilot bioreactor treating extremely As-rich AMD in situ, over a 6 months monitoring period. Inside the bioreactor, the bacterial communities responsible for iron and arsenic removal formed a biofilm (“biogenic precipitate”) whose composition varied in time and space. These communities evolved from a structure at first similar to the one of the feed water used as an inoculum to a structure quite similar to the natural biofilm developing in situ in the AMD. Over the monitoring period, iron-oxidizing bacteria always largely dominated the biogenic precipitate, with distinct populations (Gallionella, Ferrovum, Leptospirillum, Acidithiobacillus, Ferritrophicum), whose relative proportions extensively varied among time and space. A spatial structuring was observed inside the trays (arranged in series) composing the bioreactor. This spatial dynamic could be linked to the variation of the physico-chemistry of the AMD water between the raw water entering and the treated water exiting the pilot. According to redundancy analysis (RDA), the following parameters exerted a control on the bacterial communities potentially involved in the water treatment process: dissolved oxygen, temperature, pH, dissolved sulfates, arsenic and Fe(II) concentrations and redox potential. Appreciable arsenite oxidation occurring in the bioreactor could be linked to the stable presence of two distinct monophylogenetic groups of Thiomonas related bacteria. The ubiquity and the physiological diversity of the bacteria identified, as well as the presence of bacteria of biotechnological relevance, suggested that this treatment system could be applied to the treatment of other AMD

    Signatures chimiques de l'activité bactérienne dans les eaux acides minières

    No full text
    Les microorganismes extrêmophiles jouent un rôle déterminant dans le cycle du fer (oxydation et précipitation) dans les drainages miniers acides. Les phases minérales formées peuvent piéger efficacement des éléments toxiques tels que l'arsenic. L'objectif de ce travail est de mieux comprendre le rôle de l'activité bactérienne dans les processus d'atténuation naturelle des concentrations en Fe et As dans les DMA. Pour cela, différents marqueurs potentiels de l'activité bactérienne ont été étudiés (changement de spéciation, formation de biominéraux, fractionnement isotopique). L'approche de terrain a été combinée à des expériences de laboratoire. Des variations journalières et annuelles des concentrations en fer et arsenic ont été mises en évidence dans le DMA du Reigous, attribuées respectivement à des facteurs physico-chimiques et hydrologiques. La tooéléite, un oxyhydroxysulfate de Fe(III) et As(III), est présente dans les concrétions bactériennes tout au long de l'année. L'influence des facteurs biotiques (identité des souches bactériennes d'Acidithiobacillus ferrooxidans et concentration cellulaire) sur la formation de ce minéral a été étudiée en laboratoire. L'évolution de la composition isotopique du fer dans l'eau et les solides, mesurée au cours de ces expériences d'incubation et in situ (Reigous et Rio Tinto) montre un enrichissement systématique en isotopes lourds dans les solides par rapport à l'eau de départ quelle que soit la spéciation du fer initiale. Bien que l'activité bactérienne intervienne dans l'oxydation et la précipitation du fer dans ces systèmes, les fractionnements observés sont des fractionnements d'équilibre dominés par des processus abiotiquesExtremophile microorganisms play a key role in iron cycling (oxidation and precipitation) in acid mine drainage. The mineral phases that precipitate in AMD are effective scavengers of toxic elements such as arsenic. The aim of this study is to better understand the role of bacterial activity in processes leading to a natural removal of Fe and As in AMD. For this, some potential fingerprints of bacterial activity were studied (speciation changes, formation of biominerals, isotopic fractionation). Field studies have been coupled to laboratory experiments. Dial and annual variations of iron and arsenic concentrations were evidenced in the Reigous AMD, due to physico-chemical and hydrological processes respectively. Tooeleite, an Fe(III)-As(III) oxyhydroxysulfate, occurs in bacterial concretions all year long. The influence of biotic factors (identity of Acidithiobacillus ferrooxidans strains and cell concentration) on the formation of this mineral was studied in laboratory experiments. The evolution of iron isotopic composition in water and sediments, monitored during the course of the experiment and in situ (Reigous and Rio Tinto streams), shows a systematic enrichment of heavy isotopes in the solid phase compared to water whatever the original Fe speciation. Even if bacteria favour iron oxidation and precipitation in these environments, the observed fractionations are equilibrium fractionations dominated by abiotic processesMONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF
    corecore