6 research outputs found

    A Computational Statistics Approach to Evaluate Blood Biomarkers for Breast Cancer Risk Stratification

    Get PDF
    Breast cancer is the second leading cause of cancer mortality among women. Mammography and tumor biopsy followed by histopathological analysis are the current methods to diagnose breast cancer. Mammography does not detect all breast tumor subtypes, especially those that arise in younger women or women with dense breast tissue, and are more aggressive. There is an urgent need to find circulating prognostic molecules and liquid biopsy methods for breast cancer diagnosis and reducing the mortality rate. In this study, we systematically evaluated metabolites and proteins in blood to develop a pipeline to identify potential circulating biomarkers for breast cancer risk. Our aim is to identify a group of molecules to be used in the design of portable and low-cost biomarker detection devices. We obtained plasma samples from women who are cancer free (healthy) and women who were cancer free at the time of blood collection but developed breast cancer later (susceptible). We extracted potential prognostic biomarkers for breast cancer risk from plasma metabolomics and proteomics data using statistical and discriminative power analyses. We pre-processed the data to ensure the quality of subsequent analyses, and used two main feature selection methods to determine the importance of each molecule. After further feature elimination based on pairwise dependencies, we measured the performance of logistic regression classifier on the remaining molecules and compared their biological relevance. We identified six signatures that predicted breast cancer risk with different specificity and selectivity. The best performing signature had 13 factors. We validated the difference in level of one of the biomarkers, SCF/KITLG, in plasma from healthy and susceptible individuals. These biomarkers will be used to develop low-cost liquid biopsy methods toward early identification of breast cancer risk and hence decreased mortality. Our findings provide the knowledge basis needed to proceed in this direction

    Free Fatty Acids Rewire Cancer Metabolism in Obesity-Associated Breast Cancer via Estrogen Receptor and mTOR Signaling

    Get PDF
    Obesity is a risk factor for postmenopausal estrogen receptor alpha (ERα)-positive (ER+) breast cancer. Molecular mechanisms underlying factors from plasma that contribute to this risk and how these mechanisms affect ERα signaling have yet to be elucidated. To identify such mechanisms, we performed whole metabolite and protein profiling in plasma samples from women at high risk for breast cancer, which led us to focus on factors that were differentially present in plasma of obese versus nonobese postmenopausal women. These studies, combined with in vitro assays, identified free fatty acids (FFA) as circulating plasma factors that correlated with increased proliferation and aggressiveness in ER+ breast cancer cells. FFAs activated both the ERα and mTOR pathways and rewired metabolism in breast cancer cells. Pathway preferential estrogen-1 (PaPE-1), which targets ERα and mTOR signaling, was able to block changes induced by FFA and was more effective in the presence of FFA. Collectively, these data suggest a role for obesity-associated gene and metabolic rewiring in providing new targetable vulnerabilities for ER+ breast cancer in postmenopausal women. Furthermore, they provide a basis for preclinical and clinical trials where the impact of agents that target ERα and mTOR signaling cross-talk would be tested to prevent ER+ breast cancers in obese postmenopausal women

    Endocrine-Disrupting Chemicals and Breast Cancer: Disparities in Exposure and Importance of Research Inclusivity

    No full text
    Endocrine-disrupting chemicals (EDCs) are known contributors to breast cancer development. EDC exposures commonly occur through food packaging, cookware, fabrics, and personal care products as well as through the environment. Increasing evidence highlights disparities in EDC exposure across racial/ethnic groups, yet breast cancer research continues to lack the inclusion necessary to positively impact treatment response and overall survival in these socially disadvantaged populations. Additionally, the inequity in environmental exposures has yet to be remedied. Exposure to EDCs due to structural racism poses an unequivocal risk to marginalized communities. In this review, we summarize recent epidemiological and molecular studies on two lesser-studied EDCs, per- and polyfluoroalkyl substances (PFAS) and parabens, the health disparities that exist in EDC exposure between populations and their association with breast carcinogenesis. We discuss the importance of understanding the relationship between EDC exposure and breast cancer development, particularly to promote efforts to mitigate exposures and improve breast cancer disparities in socially disadvantaged populations

    Identification of metabolic pathways contributing to ER+ breast cancer disparities using a machine-learning pipeline

    No full text
    Abstract African American (AA) women in the United States have a 40% higher breast cancer mortality rate than Non-Hispanic White (NHW) women. The survival disparity is particularly striking among (estrogen receptor positive) ER+ breast cancer cases. The purpose of this study is to examine whether there are racial differences in metabolic pathways typically activated in patients with ER+ breast cancer. We collected pretreatment plasma from AA and NHW ER+ breast cancer cases (AA n = 48, NHW n = 54) and cancer-free controls (AA n = 100, NHW n = 48) to conduct an untargeted metabolomics analysis using gas chromatography mass spectrometry (GC–MS) to identify metabolites that may be altered in the different racial groups. Unpaired t-test combined with multiple feature selection and prediction models were employed to identify race-specific altered metabolic signatures. This was followed by the identification of altered metabolic pathways with a focus in AA patients with breast cancer. The clinical relevance of the identified pathways was further examined in PanCancer Atlas breast cancer data set from The Cancer Genome Atlas Program (TCGA). We identified differential metabolic signatures between NHW and AA patients. In AA patients, we observed decreased circulating levels of amino acids compared to healthy controls, while fatty acids were significantly higher in NHW patients. By mapping these metabolites to potential epigenetic regulatory mechanisms, this study identified significant associations with regulators of metabolism such as methionine adenosyltransferase 1A (MAT1A), DNA Methyltransferases and Histone methyltransferases for AA individuals, and Fatty acid Synthase (FASN) and Monoacylglycerol lipase (MGL) for NHW individuals. Specific gene Negative Elongation Factor Complex E (NELFE) with histone methyltransferase activity, was associated with poor survival exclusively for AA individuals. We employed a comprehensive and novel approach that integrates multiple machine learning and statistical methods, coupled with human functional pathway analyses. The metabolic profile of plasma samples identified may help elucidate underlying molecular drivers of disproportionately aggressive ER+ tumor biology in AA women. It may ultimately lead to the identification of novel therapeutic targets. To our knowledge, this is a novel finding that describes a link between metabolic alterations and epigenetic regulation in AA breast cancer and underscores the need for detailed investigations into the biological underpinnings of breast cancer health disparities
    corecore