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Abstract 

Breast cancer is the second leading cause of cancer mortality among women. 

Mammography and tumor biopsy followed by histopathological analysis are the current 

methods to diagnose breast cancer. Mammography does not detect all breast tumor 

subtypes; especially those arise in younger women or women with dense breast tissue, 

and are more aggressive. There is an urgent need to find circulating prognostic 

molecules and liquid biopsy methods for breast cancer diagnosis and reducing the 

mortality rate. In this study, we systematically evaluated metabolites and proteins in 

blood to develop a pipeline to identify potential circulating biomarkers for breast cancer 

risk. Our aim is to identify a group of molecules to be used in the design of portable and 

low-cost biomarker detection devices. We obtained plasma samples from women who 

are cancer free (healthy) and women who were cancer free at the time of blood 

collection but developed breast cancer later (susceptible). We extracted potential 

prognostic biomarkers for breast cancer risk from plasma metabolomics and proteomics 

data using statistical and discriminative power analyses. We pre-processed the data to 

ensure the quality of subsequent analyses, and used two main feature selection methods to 

determine the importance of each molecule. After further feature elimination based on 

pairwise dependencies, we measured the performance of logistic regression classifier 

on the remaining molecules and compared their biological relevance. We identified six 

signatures that predicted breast cancer risk with different specificity and selectivity. The 

best performing signature had 13 factors. We validated the difference in level of one of 

biomarkers, SCF/KITLG, in plasma from healthy and susceptible individuals. These 

biomarkers will be used to develop low-cost liquid biopsy methods towards early 
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identification of breast cancer risk and hence decreased mortality. Our findings provide 

the knowledge basis needed to proceed in this direction. 

Keywords: Liquid biopsy, Breast cancer risk, circulating biomarker, Machine 

learning, Feature selection  
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Background 

Breast cancer is the second leading cause of death among adult women. 

According to World Health Organization, there is a sharp rise in overall number of 

breast cancer incidences world-wide due to changes in life style, reproductive factors 

and increased life expectancy [1]. Fifty eight percent of all breast cancer-related deaths 

occur in middle- and low-income countries. While survival rates for breast cancer are 

around 80% in developed countries, this rate decreases to 60% in middle-income and to 

40% in low-income countries due to lack of early detection programs leading to 

diagnoses in late stages, where 80% of these tumors are incurable [2, 3].  In the middle- 

and low-income countries, mammography and other expensive and technologically 

complicated methods are unattainable due to high costs and shortage of trained 

personnel. [4, 5] Moreover, mammograms are more likely to detect ER-positive breast 

cancer [6] and are not recommended for younger women. In addition, diagnosis at an 

earlier stage using conventional procedures is not prognostic for all race groups, for 

example, the probability of an African-American woman with small-sized tumors 

presenting with metastasis is higher than that of a Caucasian women.[7] Thus, there is 

a critical need for affordable, portable and accurate means of detecting breast cancer 

risk before the tumors arise. Development of such technologies has the potential to 

expedite the solution for the growing health problem to prevent increasing death and 

disability among women especially in low- and middle-income countries. 

Currently, a handful of biomarkers are used in the clinic for breast cancer 

diagnosis. These biomarkers are proteins overexpressed in certain subtypes of breast 

tumors and help clinicians plan treatment.  Up to date, a limited number of breast 
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cancer biomarkers demonstrated clinical utility, including Estrogen Receptor alpha 

(ERα), Progesterone Receptor (PgR),[8] and human epidermal growth factor receptor 2 

(HER2) to predict effectiveness of systemic therapy and the Oncotype DX-21 gene 

score to predict benefits of chemotherapy. [9-11] Studies evaluating other predictive 

biomarkers are in progress for Breast Cancer susceptibility genes (BRCA1 and BRCA2) 

circulating tumor cells (CTCs), HER2 (+), TOP2A (in subjects with HER2 

overexpression) and HER2 (when is negative in tumors but is positive in the CTCs).[12] 

Circulating tumor DNA (ctDNA) is increasingly used in the clinic, particularly for 

advanced solid tumors.[13-15]  However, clinical utility and validity of ctDNA assays in 

early stage cancers is not as clear.[15] Further, we still lack reliable biomarkers to 

detect breast cancer risk before the tumors arise. Lack of such biomarkers hinders 

establishment of reliable screening or prevention programs.  

To address this critical need, we systematically evaluated metabolites and 

proteins in plasma to identify potential biomarkers for breast cancer risk that can be 

utilized to develop minimally invasive, affordable, portable, and accurate screening 

devices. In this study, our focus is on liquid biopsy samples from plasma that have the 

potential to provide simple and minimally invasive information for diagnostic decisions. 

We developed an efficient pipeline to analyze liquid biopsy samples, to detect blood 

biomarkers and to identify the risk for breast cancer before tumors arise. This pipeline 

paves the way towards developing the aforementioned screening devices to be used in 

the field by basic level healthcare workers in low-resource environments. 

Methods 

Patients and Plasma Samples 
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All studies were approved by the Indiana University Institutional Review Board 

(IRB protocol number 1011003097). All research was carried out in compliance with the 

Helsinki Declaration. Donors provided broad written consent for the use of their 

specimens in research. The written consent document informed the donor that the 

donated specimens and medical data would be used for the general purpose of helping 

to determine how breast cancer develops. It was explained in the written consent that 

the exact laboratory experiments were unknown at the time of donation, and that 

proposals for use of the specimens would be reviewed and approved by a panel of 

independent researchers before specimens and/or data were released for research 

purposes. Hematoxylin and eosin stained sections of the FFPE tissue of the identified 

donors were reviewed by pathologist to confirm the absence of histological 

abnormalities. In order to exclude or control confounding variables such as age, racial 

and ethnic background and menopausal status the subjects in the two cohorts, 

susceptible and healthy controls, were matched by selection of the comparison group 

(healthy controls) with respect to the distribution of the above mentioned confounders in 

susceptible group. 

Plasma preparation 

Blood was drawn into the Plasma Separator tube (Vacutainer Venous Blood 

Collection Tubes: SST* Plasma Separation Tube, Fisher Scientific cat. #0268396) and 

gently mixed by inverting the tube 5 times. Forty-five minutes (±10 min.) after the blood 

had been drawn, the Plasma Separator Tube was placed into a minicentrifuge 

(Eppendorf centrifuge 5702) and centrifuged at 1200 rcf for ten minutes at room 
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temperature. A repeater pipet was used to aliquot 600ul of the plasma into each of five 

cryogenic vials. Samples were stored at -80°C until use. 

OLINK Protein biomarker and whole metabolite profiling assays  

All the samples from human studies were handled and analyzed in accordance 

with UIUC IRB protocol #06741 and as previously described [16]. 10 µl of plasma 

samples from Komen Tissue Bank were submitted to OLINK biosciences for cancer and 

inflammation biomarker analysis. 50 µl of plasma samples were submitted to the 

Metabolomics Center at UIUC. GC/MS whole metabolite profiling was performed to 

detect and quantify the metabolites by using gas chromatography-mass spectrometry 

(GC/MS) analysis. Metabolites were extracted from 50 µl of plasma according to Agilent 

Inc. application notes. The hentriacontanoic acid was added to each sample as the 

internal standard prior to derivatization. Metabolite profiles were acquired using an 

Agilent GC/MS system (Agilent 7890 gas chromatograph, an Agilent 5975 MSD, and an 

HP 7683B autosampler). The spectra of all chromatogram peaks were evaluated using 

the AMDIS 2.71 and a custom-built database with 460 unique metabolites. All known 

artificial peaks were identified and removed prior to data analysis. To allow the 

comparison between samples, all data were normalized to the internal standard in each 

chromatogram.   

Statistical Analysis  

Preprocessing of Measurements 

We normalized all individuals’ plasma data in each dataset with respect to the 

healthy individuals’ data in the respective dataset to factor out potential differences in 
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data acquisition. More specifically, we performed the following procedure separately for 

both datasets. For each molecule in a dataset, we subtracted the mean measurement of 

that molecule in healthy individuals from all individuals’ measurements and divided this 

difference by the standard deviation of that molecule’s measurements in healthy 

individuals. Thus, we converted each single measurement to a z-score which describes 

the deviation of that measurement from the mean of healthy individual’s, in terms of the 

standard deviation among healthy individuals. As the final step, we merged two 

datasets, which were normalized with respect to their own healthy individuals, and 

obtained a dataset with 49 susceptible and 47 healthy individuals. 

Molecule Ranking, Elimination and Performance Assessment 

A two-stage procedure is applied to identify the molecule sets with high 

discriminative power between the healthy and the susceptible groups. The first stage 

involves ranking all molecules with respect to their individual discriminative powers 

(importance ranking). The second stage involves molecule elimination (selection) based 

on their interdependencies. 

To independently assess each of 181 molecules, we used two different methods. 

In the first method, we applied Student’s t-test to test the null hypothesis that the 

measurements in the two groups come from the same distribution. All molecules were 

ranked based on the corresponding p-values to get a short-list of the top-ranking 20 

molecules with the lowest p-values, discarding the others from further processing. In the 

second method, we applied the random forest algorithm to assess the discriminative 

power of each of the 181 molecules individually by using the mean decrease impurity 

(Gini importance), which is defined as the mean decrease in node impurity over all the 

HH
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trees in the forest. This time, all molecules were ranked based on their Gini importance 

values to get the top-ranking 20 molecules with the highest importance values. No further 

threshold was applied to these top-ranking molecules at this stage for both methods, as 

the low-ranking molecules in these lists may potentially have significant marginal 

contribution to a subset of molecules when used together. 

To generate an optimum subset of the top 20 molecules identified by Student’s t-

test or random forest, we used the following iterative procedure. We initialized a “selected 

molecules” list (S-list) with the top-ranking molecule and an “unselected molecules” list 

(U-list) with the remaining 19 ranked molecules. We iteratively assessed the individual 

molecules in the U-list with respect to the molecules set represented by the S-list, and 

added the ones that have a positive contribution to the S-list while discarding the others. 

Three different approaches are applied to assess whether a molecule has a positive 

contribution to the S-list: (i) Manual selection: Logistic Regression (LR) classifiers, to 

identify healthy and susceptible groups, are trained and tested iteratively by using the selected 

molecules (S-list) and the top-ranking unselected molecule (U-list) as the features. The classifier 

performance is assessed using the  selected molecules’ AUC (Area Under Curve) of ROC 

(Receiver Operator Characteristic) curves. After each iteration, if the AUC is increased, the top-

ranking unselected molecule is added to the S-list, otherwise discarded. The iterations stop 

when the U-list is exhausted. (ii) Paired t-test: The inter-molecule dependencies, as 

measured by the paired t-test, is used to select the molecules from the U-list to be added 

to the S-list. We first computed the paired t-test p-values for each pair of molecules among 

the aforementioned top-ranking 20 molecules with the null hypothesis being that both 

come from the same distribution. Using these p-values, we iteratively discarded the 
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molecules from the U-list that have p-value larger than 0.05 when tested with anyone of 

the molecules from the S-list and moved the unselected molecule from U-list to S-list with 

the lowest maximum p-value (<0.05) when tested with the selected molecules. The 

iterations stop when the U-list is exhausted. (iii) Correlation Analysis: The second approach 

described above is repeated by replacing the null hypothesis testing with the correlation analysis 

as measured by the Pearson’s correlation coefficient (pCC). We used 0.5 as the pCC 

threshold. 

Finally, we performed LR classification (4-fold cross-validation with 500 iterations) 

using the top-ranking N molecules in each list, where N runs from one to the length of the 

corresponding list. Of note, use of LR for performance assessment of classification at this 

last step is distinct from the earlier use of LR for manual selection of the molecules. 

SCF/KITLG quantification using enzyme-linked immunosorbent assay 

(ELISA) 

Plasma samples from both groups were collected, and stored at -80°C until the 

time of assay. We used an enzyme-linked immunosorbent assay (ELISA) kit for 

SCF/KITLG (Sigma, catalogue no. RAB0330). Samples were diluted two fold per 

suggestion from the manufacturer. For SCF/KITLG the antibody, concentrate was 

diluted 100 fold with 1X Diluent Buffer. To prepare the HRP-Streptavidin Concentrate 

the vial was spin and diluted 400 times with 1X Diluent Buffer. A 50ng/ml stock solution 

was used to make the standard curve: 2000 pg/ml, 666.7pg/ml, 222.2 pg/ml, 

74.07pg/ml, 24.69pg/ml, 8.23 pg/ml and 2.74pg/ml for SCF/KITLG.  The Human 

SCF/KITLG antibody-pre coated ELISA wells were filled with 100µl of either serially 

diluted standard protein and plasma samples. After 2.5 hours incubation with gentle 
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shaking at room temperature, 100µl of 1x SCF/KITLG Biotinylated Detection Antibody 

were added to the wells. After one-hour incubation with shaking at room temperature, 

the solution was discarded and the wells were washed four times using 300µL wash 

buffer solution. Final wash was aspirated and plates were inverted to remove any 

remaining was buffer. Then, 100µl of Prepared HRP Streptavidin solution was added to 

each well, and incubated for 45 minutes at room temperature with gentle shaking. The 

solution was discarded and washed four times as described previously. 100µl of ELISA 

colorimetric TMB reagent was added to each well and incubated for 30 minutes at room 

temperature in the dark. After this, 50µl of Stop solution was added to each well. 

Immediately after color development, the OD values were measured at 450nm using 

Cytation 5 Cell Imaging Multi Mode- Reader (Biotek) and SCF/KITLG concentrations 

were calculated from specific calibration curves prepared with known standard 

solutions. Diluent buffer served as blank and the OD of these wells was subtracted from 

the values.  

Results 

Identification of circulating factor signatures for future breast cancer risk 

assessment 

Because we wanted to identify circulating factors that might indicate future breast 

cancer risk, we utilized plasma samples from a cohort of healthy controls (Healthy) and 

individuals who were clinically healthy at the time of plasma collection but later had a 

diagnosis of breast cancer (Susceptible). We analyzed plasma samples using whole 

metabolite profiling and OLINK biomarker analysis for a panel of inflammation and 

cancer-related proteins. We used two different sample sets, one with 39 susceptible and 
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36 healthy and the other with 10 susceptible and 11 healthy individuals, which were 

collected at different times. In the first set, 22 out of 39 susceptible and 23 out of 36 

healthy individuals were postmenopausal status and remaining ones were 

premenopausal. In the second dataset, 7 out of 10 susceptible and 8 out of 11 healthy 

individuals were postmenopausal status and remaining ones were premenopausal. 

Average time to diagnosis was 3.7 years after samples donation (median is 4 years). 

Data from two datasets were pre-processed separately because they were acquired at 

different times, and were expected to have a variation due to external factors.  Plasma 

levels of 295 different molecules for the first dataset and 339 different molecules for the 

second dataset were detected for the individuals. Some molecules had missing values 

(were not detected by metabolomics or OLINK approach) for some individuals and 

further, some molecules were not measured for both datasets. All these molecules were 

excluded from the analysis. Therefore, we analyzed 181 different molecules, consisting 

of metabolites and proteins, which have plasma level values for every subject in both 

datasets. 

In order to generate an inclusive list of features that would best discriminate 

between healthy and susceptible individuals, we took a stepwise approach where we 

first screened all molecules that contribute to increased classifier performance (LR) and 

then iteratively eliminate the redundant ones for both top-ranking molecule lists obtained 

by either of the initial molecule selection methods. We initially selected two different 

groups of 20 molecules (out of 181 molecules) using the Student’s t-test and random 

forest (600 trees) methods to rank all 181 molecules with respect to their (healthy vs 

susceptible) discriminative power. Top-ranking 20 molecule sets obtained by two 
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different feature selection methods, Student’s t-test and random forest, contain 10 

common molecules, highly concentrated in the upper halves of the lists. For example, 4 

out of 5 top ranking molecules are common in both datasets. To assess the pairwise 

dependencies among the most discriminative 20 molecules and further reduce the 

number of features in our lists we used the paired t-test (Table 1-Student’s t-test-, Table 

2-random forest-) or pairwise correlation analysis (Table 3-Student’s t-test-, Table 4-

random forest-). To ensure that all molecules that might positively contribute to classifier 

performance are included in the signature we performed logistic regression. Finally, to 

eliminate redundant molecules, we utilized paired t-test p-values (p>0.05) and/or 

correlation coefficients (pCC>0.5) to discard one of the molecules in that pair. Our 

approach resulted in six molecule signatures (Table 5-Student’s t-test-, Table 6-random 

forest-). 

Assessment of classification performances of molecule signatures using 

machine-learning approach 

In order to test the classification performance of each molecule signature, we 

performed LR classification using the molecules indicated in Table 5 and Table 6. Of 

note, use of LR for performance assessment of classification at the last step is distinct 

from the earlier use of LR for manual selection of the molecules. Our top 20 feature list 

generated by Student’s t-test contained MMP-10, MCP-3, SCF/KITLG, TRAIL, EN-

RAGE, MAD HOMOLOG 5 (SMAD5), CXL17, HK11, FGF-BP1, XPNPEP2, C15:0 

(Pentadecanoic acid), PPY, FGF-5, FGF-21, ESM-1, FASLG, CD160, TNFB, CTSV and 

ADA (Figure 1A). Unsupervised clustering of the data using this list of molecules 

separated healthy, and susceptible individuals, only two healthy individuals were 
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classified with susceptible individuals and only one individual was classified together 

with healthy individuals (Figure 1A). This list without any further feature elimination 

achieved AUC value of 0.83 (Figure 1B).  Reduction of feature number to 13 using 

manual selection increased AUC value to 0.85±0.04 (Figure 1C). Further reduction of 

feature using correlation analysis (Figure 1D; AUC=0.78±0.04) or paired t-test (Figure 

1E; AUC=0.69±0.03). On the other hand, AUC values achieved by molecule signatures 

using Random Forest had lower performance (Figure 2). This list contained XPNPEP2, 

phosphoric acid, FGF-BP1, MAD HOMOLOG 5, ESM-1, SCF/KITLG, TRAIL, PD-L1, 

FLT3L, 4E-BP1, MCP-1, PPY, FGF-5, FASLG, MMP-10, EPHA2, CD27, CXCL1, HK14 

and TLR3 (Figure 2A). Unsupervised clustering of the data using this list of molecules 

was less successful in separating healthy and susceptible individuals, 10 of susceptible 

individuals were classified with healthy individuals (Figure 2A). Using all 20 factors 

achieved AUC of 0.80±0.05 (Figure 2B). Reducing the molecule number to 10 using 

manual selection (Figure 2C, AUC=0.80±0.04), to 11 using correlation analysis (Figure 

2D, AUC=0.76±0.05) or to two using paired t-test (Figure 2E, AUC=0.67±0.04) did not 

improve the AUC values. To sum, initial feature selection using Student’s t-test followed 

by manual selection using LR gave us the best performing list of 13 circulating 

molecules from plasma for differentiating between healthy and susceptible individuals.  

Biological Relevance of Biomarkers 

Our best performing list contained SCF/KITLG, MMP-10, MAD HOMOLOG5, 

CXL17, MCP-3, FGF05, FASLG, CD160, TNFB, ESM-1, FGF-21, XPNPEP2 and CTSV 

(Figure 3A). In order to increase our understanding of molecules in the best performing 

molecule list. Unsupervised clustering of the data using this list of molecules separated 
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healthy and susceptible individuals accurately (Figure 3A). To delve further into 

direction of change in the plasma levels of identified molecules we compared level of 

individual molecules in healthy vs. susceptible individuals. Six of the 13 molecules, 

including SCF/KITLG, MAD HOMOLOG 5, FASLG, MMP-10, XPNPEP2 and CXL17 

were statistically significantly different between the two groups (Figure 3B). Since our 

aim was to identify the molecules that have marginal but significant contribution to the 

classification task when used together with other molecules, even if they have weak 

discriminative power on their own, we still included these molecules with poor t-test 

performance individually, p-value>0.05, or low random forest importance in the final 

lists. We were particularly interested in SCF/KITLG as this molecule was the top 

molecule identified in both feature selection methods (Table 5 and 6). Overall, 

SCF/KITLG levels were lower in individuals with increased breast cancer risk (Figure 

3C). We also validated our finding from OLINK analysis using another independent 

method, ELISA analysis, and verified that level of this protein is lower in susceptible 

individuals (Figure 3B).  

Discussion 

In this study, we developed a pipeline to identify plasma biomarkers of breast 

cancer risk using a combination of classical statistics methods and machine learning 

approaches, and independently validated one of the identified biomarkers, SCF/KITLG. 

By iterative feature selection, elimination and performance testing we generated a 

molecular signature of plasma biomarkers that can discriminate between healthy and 

breast cancer susceptible individuals. Because of our approach, some of the molecules 
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in this signature had weak discriminative power on their own, yet they contributed 

significantly to the discriminative power of the signature.  

A biomarker is a biomolecule, such as DNA, RNA, proteins, hormones and 

chemical modifications that can be measured to describe that an abnormal or a normal 

process is taking place within the organism. [12]  A cancer biomarker can arise due to 

changes in the DNA (mutations), rearrangements, deletions (missing copies), or 

amplifications. Biomarkers might affect various hallmarks of cancer including cell cycle, 

cell death, or immunological properties of the tumor and indicate the risk of developing 

cancer, its progression and response to therapy. [8, 9, 12]  

Previously, Kazarian et al, studied pre-diagnostic samples from the UK 

Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). Serum samples were 

taken from 239 women who were diagnosed with invasive ductal carcinoma in breast 

(IDC), months to years after sample donation [17]. These patients were post-

menopausal women with ages ranging from 50 to 74, who were healthy cases at the 

moment of recruitment but that later developed breast cancer. Hence, this group studied 

the ability of several serum markers to detect breast cancer cases before these patients 

were diagnosed. They studied CA 15-3, RANTES/CCL5, OPN, PAI-1, SLP1, HSP90A, 

IGFBP3, APOC1 and PAPPA. They concluded that only 3 out of the 9 serum markers, 

(CA 15-3, PAI1 and HSP90A) were potential prognostic biomarkers[17].  Those 

analyses were performed using a limited panel of proteins. However, in our analysis, we 

characterized more than 300 proteins and metabolites in plasma and used a final list of 

181 molecules to generate our signatures.  
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One potential marker of interest we identified is SCF/KITLG protein. KITLG 

protein is expressed in 53% of breast cancer cell lines[18]. SCF/KITLG was shown to 

have a proliferative role in BCK4 cells, and when it is reduced, it decreased estrogen-

induced proliferation[19]. We identified lower level of this biomarker in plasma from 

women with breast cancer risk. Since at the time of the blood draw the women did not 

have tumors it is not possible for us to infer level of this protein in the tumor. Whether 

SCF plays a role in the induction of breast tumors or lower plasma levels of this protein 

contributes to the tumor biology needs to be determined. 

Several of the molecules in our signature were also implicated in cancer biology. 

For example, MAD HOMOLOG5/SMAD5 plays a role in breast cancer cell stemness, 

and resistance to chemotherapy. [20, 21] FGF-5, FASLG, CTSV and ESM-1 expression 

is associated with lower survival and worst outcomes. [22-27] MMP-10 affects 

angiogenesis and apoptosis [28, 29]; XPNPEP2 is overexpressed in cervical cancer 

patients and increases motility and invasiveness of tumors. [30] FGF-21, TNFB 

contributes to metastatic potential of breast cancer cells. [31, 32] CXL17 [33], MCP-

3[34] and CD160 [35] play a role in recruitment of immune cells. TNFB/LTA 

polymorphisms increased the cancer risk in various populations. [36, 37] All these 

studies focused on the tumors or patients that already have cancers. The impact of 

proteins in our signature on breast cancer risk and initiation remains to be established. 

Direction of differences in the plasma levels of these proteins between healthy and 

susceptible individuals might be different from what is reported in already established 

tumors and might indicate a different role for these proteins at early stages of tumor 

development.  
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More recently, liquid biopsy methods supported with machine-learning 

approaches have been used for the detection of different cancer types.[15, 38, 39] For 

example, Cohen et al. recently demonstrated the capability of detecting eight different 

cancer types including breast cancer using circulating tumor DNA (ctDNA) and protein 

biomarkers [40]. They reported remarkable sensitivity values >95% for ovarian and liver 

cancers. However, the reported sensitivity for breast cancer is rather low at 33%. The 

novelty of our study is identifying circulating molecules that are associated with future 

cancer risk and developing a pipeline to utilize these markers in generation of 

biosensors based on our previous work to detect breast cancer risk. [41]  

We used a combination of various statistical analysis methods to identify 

biomarkers. Although, Student’s t-test and/or random forest give some information 

about the ability of a biomarker to discriminate between healthy and susceptible 

patients, it alone is not sufficient. To identify the biomarkers with high classification 

performance, we applied logistic regression. Area under curve (AUC) of receiver 

operating characteristic (ROC) curves resulting from the classification operations on 

these biomarkers are commonly used as an indicator for the discriminative capacity of a 

single molecule or a set of molecules. Previously, logistic regression was performed on 

predictors consisting of serum levels of several molecules, but authors did not report 

any confidence interval for that AUC value and did not split the data into training and 

test tests.[42] In another study, authors used Student’ t-test and its non-parametric 

equivalence (Mann-Whitney U-test) to find potential biomarkers, but the lower bound of 

their reported confidence intervals was dramatically low, suggesting that those 

biomarkers were not robust, and they also did not split the training and test sets.[43] 
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Several other studies have also used these methods to identify potential biomarkers but 

have not utilized a train-set split for their datasets.[17, 44-46] Training (Model building) 

and testing on the same dataset is not an ideal practice in machine learning as the 

model is likely to over-fit to the data. This approach results in artificially high predictive 

rates, in other words, low generalizability, which refers to poor applicability of the model 

to unseen data. The cross-validation that we employed in this study is a common 

approach to circumvent the problem of overfitting.  

Conclusion 

We identified biomarkers of breast cancer risk using metabolomics and protein 

profiling in plasma samples from healthy and susceptible individuals. Future studies are 

required to validate these markers in bigger data sets, to determine their role in breast 

tumorigenesis, develop liquid biopsy/biosensor-based approaches and move this 

information to clinic for early identification of breast cancer risk. In addition, further 

molecular studies in cell lines and animal models are required to show conclusively 

whether or not each or a combination of these markers can be utilized as indicators of 

breast cancer risk without having observable effects on breast cancer cells or can have 

other roles at the earlier stages of carcinogenesis. Overall, our analysis offers novel 

plasma biomarkers for further validation and functional characterization.  
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Table and Figure legends 

Table 1. The p-values of the paired t-test analysis for each pair of molecules 

among the top 20 molecules ranked by applying the Student’s t-test to all 181 

molecules. The paired t-test assesses the pairwise dependencies of the most 

discriminative 20 molecules. Pairs with p>0.05 show strong dependency within that pair. 

Table 2. The p-values of the paired t-test analysis for each pair of molecules 

among the top 20 molecules ranked by applying the random forest to all 181 molecules. 

The paired t-test assesses the pairwise dependencies of the most discriminative 20 

molecules. Pairs with p>0.05 show strong dependency within that pair. 

Table 3. Pearson’s correlation coefficient between each pair of 20 most 

important molecules ranked by their Student’s t-test p-values. Pairs with pCC>0.5 show 

strong dependency within that pair.  

Table 4. Pearson’s correlation coefficient between each pair of 20 most 

important molecules ranked by their importance calculated by random forest. Pairs with 

pCC>0.5 show strong dependency within that pair.  

Table 5. Ranking of molecules identified by initial Student’s t-test for each 

consequent feature elimination method. The “Student’s t-test” column lists the top 

ranking most discriminative 20 molecules among 181 molecules.  The “Manual 

Selection by LR”, “Paired t-test” and “Correlation Analysis” columns list the molecules 
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selected from these 20 top molecules by applying the iterative molecule elimination 

procedures using manual selection by LR based on classification performance, paired t-

test and correlation analysis, respectively, as described in Statistical Analysis. 

Table 6. Ranking of molecules identified by initial random forest method for each 

consequent feature elimination method. The “Random Forest” column lists the top 

ranking most discriminative 20 molecules among 181 molecules.  The “Manual 

Selection by LR”, “Paired t-test” and “Correlation Analysis” columns list the molecules 

selected from these 20 top molecules by applying the iterative molecule elimination 

procedures using manual selection by LR based on classification performance, paired t-

test and correlation analysis, respectively, as described in Statistical Analysis. 

Figure 1. Identification and performance assessment of circulating factor 

signatures for future breast cancer risk assessment using Student’s t-test as 

initial feature selection method (A) Levels of top 20 molecules identified by Student’s 

t-test in 47 healthy (red) and 49 susceptible (green) individuals using OLINK analysis. Z-

Scores were not log transformed or centered. Unsupervised hierarchical clustering was 

performed using Cluster 3 software for Z-scores of molecule concentrations with 

uncentered correlation as similarity metric and average linkage as clustering method.  

Data are visualized using Java Tree view software. In the lower panel, each column 

represents an individual and each row represents a molecule, with elevated levels in 

red, reduced levels in blue, and mean control levels in white. Bar indicates the coloring 

for Z-scores of molecule concentrations. (B) LR classification performances (AUC 

values) using the top-ranking N (1-20) molecules, ranked by their p-values in Table 5, 

and the ROC curves of every AUC value where the bold black line indicates ROC curve 
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of the best performing (the highest AUC value) molecule set. (C) LR classification 

performances (AUC values) using the top-ranking N (1-13) molecules selected manually 

by considering the LR classification performance given in Figure 1B and the ROC 

curves of every AUC value where the bold black line indicates ROC curve of the best 

performing (the highest AUC value) molecule set. (D) LR classification performances 

(AUC values) using the top-ranking molecules selected from the list of 20 molecules, 

ranked by Student’s t-test in Table 5, by iterative elimination using pair-wise Pearson 

correlation coefficients of features in Table 3 (|pCC|=0.5 is the significance threshold). 

The ROC curves of every AUC value where the bold black line indicates ROC curve of 

the best performing (the highest AUC value) molecule set. (E) LR classification 

performances (AUC values) using the top-ranking N (1-2) molecules selected from the 

list of 20 molecules, ranked by Student’s t-test in Table 5, by iterative elimination using 

paired t-test p-values of features in Table 1 (p=0.05 is the significance threshold). The 

ROC curves of every AUC value where the bold black line indicates ROC curve of the 

best performing (the highest AUC value) molecule set. 

Figure 2. Identification and performance assessment of circulating factor 

signatures for future breast cancer risk assessment using random forest as initial 

feature selection method (A) Levels of top 20 molecules identified by random forest 

method in 47 healthy (red) and 49 susceptible (green) individuals using OLINK analysis. 

Z-Scores were not log transformed or centered. Unsupervised hierarchical clustering 

was performed using Cluster 3 software for Z-scores of molecule concentrations with 

uncentered correlation as similarity metric and average linkage as clustering method.    

Data are visualized using Java Tree view software. In the lower panel, each column 
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represents an individual and each row represents a molecule, with elevated levels in 

red, reduced levels in blue, and mean control levels in white. Bar indicates the coloring 

for Z-scores of molecule concentrations. (B) LR classification performances (AUC 

values) using the top-ranking N (1-20) molecules, ranked by their feature importance 

values (computed by random forest) in Table 6, and the ROC curves of every AUC 

value where the bold black line indicates ROC curve of the best performing (the highest 

AUC value) molecule set. (C) LR classification performances (AUC values) using the 

top-ranking molecules selected manually by considering the LR classification 

performance given in Figure 2B and the ROC curves of every AUC value where the 

bold black line indicates ROC curve of the best performing (the highest AUC value) 

molecule set. (D) LR classification performances (AUC values) using the top-ranking N 

(1-11) molecules selected from the list of 20 molecules, ranked by random forest in 

Table 6, by iterative elimination using pair-wise Pearson correlation coefficients of 

features in Table 4 (|pCC|=0.5 is the significance threshold). The ROC curves of every 

AUC value where the bold black line indicates ROC curve of the best performing (the 

highest AUC value) molecule set. (E) LR classification performances (AUC values) 

using the top-ranking N (1-2) molecules selected from the list of 20 molecules, ranked 

by random forest in Table 6, by iterative elimination using paired t-test p-values of 

features in Table 2 (p=0.05 is the significance threshold). The ROC curves of every 

AUC value where the bold black line indicates ROC curve of the best performing (the 

highest AUC value) molecule set.  

Figure 3. A. Validation of biomarker identification. (A) Levels of 13 molecules 

identified by Student’s t-test followed by manual selection in 47 healthy (red) and 49 
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susceptible (green) individuals using OLINK analysis. Z-Scores were not log 

transformed or centered. Unsupervised hierarchical clustering was performed using 

Cluster 3 software for Z-scores of molecule concentrations with uncentered correlation 

as similarity metric and average linkage as clustering method.  Data are visualized 

using Java Tree view software. In the lower panel, each column represents an individual 

and each row represents a molecule, with elevated levels in red, reduced levels in blue, 

and mean control levels in white. Bar indicates the coloring for Z-scores of molecule 

concentrations. (B) Changes in the levels of 12 of 13 signature molecules in 47 healthy 

and 49 susceptible individuals. Anderson-Darling and Kolmogorov-Smirnov tests for 

normality was used. If the dataset didn’t pass the normality test, non-parametric Mann-

Whitney test was used to assess if level of a molecule is statistically significantly 

different in plasma from healthy vs. susceptible individuals (molecules with *). 

Otherwise, unpaired t-test was used to assess if level of a molecule is statistically 

significantly different in plasma from healthy vs. susceptible individuals. All data points 

are plotted. P-values are indicted on the graphs. (C) Level of SCF/KITLG in 47 healthy 

and 49 susceptible individuals. Anderson-Darling and Kolmogorov-Smirnov tests for 

normality was used. Non-parametric Mann-Whitney test was used to assess if level of a 

molecule is statistically significantly different in plasma from healthy vs. susceptible 

individuals. All data points are plotted (as histogram on the left side and as box-

whiskers graph on right side). P-values are indicted on the graph. (D) Results from 3C 

are independently validated using ELISA assay using all the samples. Level of identified 

biomarkers in human plasma samples were compared using unpaired t-test. P-value is 

reported on the graph. Values from all the samples are presented.  
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Table 1 SCF MAD HOMOLOG 5FGF-5 FASLG MMP-10 PPY
SCF 0 0.6963 0.0004 0.0006 0.3286 0.0017
MAD HOMOLOG 5 0.6963 0 0.0013 0.0014 0.6643 0.0038
FGF-5 0.0004 0.0013 0 0.6618 0.002 0.7183
FASLG 0.0006 0.0014 0.6618 0 0.0018 0.9554
MMP-10 0.3286 0.6643 0.002 0.0018 0 0.0033
PPY 0.0017 0.0038 0.7183 0.9554 0.0033 0
XPNPEP2 0.361 0.5633 0.0018 0.0015 0.9115 0.0054
FGF-21 0.003 0.0026 0.6703 0.9738 0.0006 0.9356
CXL17 0.2659 0.4489 0.0017 0.0034 0.8086 0.0018
MCP-3 0.189 0.2985 0.0027 0.002 0.542 0.0055
ESM-1 0.0003 0.0006 0.6315 0.9137 0.0073 0.8852
HK11 0.1552 0.3257 0.0064 0.0015 0.5825 0.0063
TRAIL 0.1309 0.5298 0.0033 0.0039 0.8731 0.0096
FGF-BP1 0.1303 0.2913 0.01 0.0112 0.5308 0.0166
EN-RAGE 0.1191 0.354 0.0027 0.005 0.6119 0.0124
C15:0 0.1324 0.2454 0.0091 0.0067 0.417 0.0109
TNFB 0.0029 0.008 0.4087 0.6151 0.0071 0.6315
CTSV 0.0045 0.0062 0.4174 0.548 0.0154 0.6427
ADA 0.001 0.0083 0.6858 0.9595 0.0169 0.93
CD160 0.0015 0.007 0.4709 0.6497 0.0086 0.6801

Table 1



XPNPEP2 FGF-21 CXL17 MCP-3 ESM-1 HK11 TRAIL FGF-BP1
0.361 0.003 0.2659 0.189 0.0003 0.1552 0.1309 0.1303

0.5633 0.0026 0.4489 0.2985 0.0006 0.3257 0.5298 0.2913
0.0018 0.6703 0.0017 0.0027 0.6315 0.0064 0.0033 0.01
0.0015 0.9738 0.0034 0.002 0.9137 0.0015 0.0039 0.0112
0.9115 0.0006 0.8086 0.542 0.0073 0.5825 0.8731 0.5308
0.0054 0.9356 0.0018 0.0055 0.8852 0.0063 0.0096 0.0166

0 0.0034 0.9172 0.66 0.0125 0.6878 0.9708 0.6209
0.0034 0 0.0014 0.0029 0.9489 0.006 0.0063 0.013
0.9172 0.0014 0 0.7384 0.0038 0.7438 0.9536 0.6714

0.66 0.0029 0.7384 0 0.0089 0.9712 0.7017 0.9032
0.0125 0.9489 0.0038 0.0089 0 0.0032 0.0061 0.013
0.6878 0.006 0.7438 0.9712 0.0032 0 0.7392 0.8734
0.9708 0.0063 0.9536 0.7017 0.0061 0.7392 0 0.6469
0.6209 0.013 0.6714 0.9032 0.013 0.8734 0.6469 0
0.6971 0.0134 0.7648 0.9911 0.0112 0.9815 0.6816 0.9125
0.4563 0.0096 0.5413 0.788 0.0289 0.7421 0.5747 0.8767
0.0108 0.7003 0.0172 0.0183 0.7453 0.0202 0.0092 0.0416
0.0055 0.6644 0.026 0.017 0.7257 0.0234 0.0274 0.0442
0.0188 0.9805 0.019 0.0211 0.9715 0.037 0.0071 0.0429
0.0214 0.7499 0.0126 0.0241 0.7768 0.0087 0.0078 0.0441



EN-RAGE C15:0 TNFB CTSV ADA CD160
0.1191 0.1324 0.0029 0.0045 0.001 0.0015
0.354 0.2454 0.008 0.0062 0.0083 0.007

0.0027 0.0091 0.4087 0.4174 0.6858 0.4709
0.005 0.0067 0.6151 0.548 0.9595 0.6497

0.6119 0.417 0.0071 0.0154 0.0169 0.0086
0.0124 0.0109 0.6315 0.6427 0.93 0.6801
0.6971 0.4563 0.0108 0.0055 0.0188 0.0214
0.0134 0.0096 0.7003 0.6644 0.9805 0.7499
0.7648 0.5413 0.0172 0.026 0.019 0.0126
0.9911 0.788 0.0183 0.017 0.0211 0.0241
0.0112 0.0289 0.7453 0.7257 0.9715 0.7768
0.9815 0.7421 0.0202 0.0234 0.037 0.0087
0.6816 0.5747 0.0092 0.0274 0.0071 0.0078
0.9125 0.8767 0.0416 0.0442 0.0429 0.0441

0 0.8043 0.0374 0.025 0.0115 0.0327
0.8043 0 0.0409 0.0464 0.0725 0.0502
0.0374 0.0409 0 0.969 0.7488 0.9447
0.025 0.0464 0.969 0 0.7132 0.9266

0.0115 0.0725 0.7488 0.7132 0 0.8146
0.0327 0.0502 0.9447 0.9266 0.8146 0
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Table 3 SCF MAD HOMOLOG 5FGF-5 FASLG MMP-10 PPY XPNPEP2
SCF 1 0.136 0.129 0.076 0.318 -0.088 0.03
MAD HOMOLOG 5 0.136 1 0.057 0.064 -0.048 -0.119 0.148
FGF-5 0.129 0.057 1 0.21 0.047 0.15 0.123
FASLG 0.076 0.064 0.21 1 0.079 0.169 0.179
MMP-10 0.318 -0.048 0.047 0.079 1 -0.002 0.156
PPY -0.088 -0.119 0.15 0.169 -0.002 1 -0.047
XPNPEP2 0.03 0.148 0.123 0.179 0.156 -0.047 1
FGF-21 -0.189 0.021 0.104 0.192 0.32 0.085 0.11
CXL17 0.215 0.323 0.151 0.037 0.323 0.199 0.168
MCP-3 0.03 0.217 0.116 0.165 0.281 0.012 0.15
ESM-1 0.265 0.305 0.067 0.149 -0.087 -0.006 -0.169
HK11 0.261 0.208 -0.048 0.246 0.264 0.022 0.188
TRAIL 0.66 0.244 0.113 0.127 0.294 -0.065 -0.03
FGF-BP1 0.228 0.118 -0.073 -0.068 0.076 -0.147 0.004
EN-RAGE 0.415 0.132 0.233 0.154 0.143 -0.034 0.118
C15:0 0 0.017 -0.027 0.075 0.097 0.003 0.227
TNFB 0.073 0.012 0.184 0.285 0.159 0.089 0.138
CTSV -0.024 0.083 0.049 0.384 -0.042 -0.175 0.281
ADA 0.312 0.089 0.219 0.12 0.043 0.035 0.083
CD160 0.223 0.082 0.161 0.446 0.158 0.173 -0.018

Table 3



FGF-21 CXL17 MCP-3 ESM-1 HK11 TRAIL FGF-BP1 EN-RAGE
-0.189 0.215 0.03 0.265 0.261 0.66 0.228 0.415
0.021 0.323 0.217 0.305 0.208 0.244 0.118 0.132
0.104 0.151 0.116 0.067 -0.048 0.113 -0.073 0.233
0.192 0.037 0.165 0.149 0.246 0.127 -0.068 0.154
0.32 0.323 0.281 -0.087 0.264 0.294 0.076 0.143

0.085 0.199 0.012 -0.006 0.022 -0.065 -0.147 -0.034
0.11 0.168 0.15 -0.169 0.188 -0.03 0.004 0.118

1 0.276 0.2 -0.124 0.092 0.101 0.003 0.005
0.276 1 0.129 0.164 0.32 0.198 0.092 0.141

0.2 0.129 1 0.02 0.068 0.214 0.112 0.319
-0.124 0.164 0.02 1 0.269 0.16 0.072 0.117
0.092 0.32 0.068 0.269 1 0.176 0.187 0.047
0.101 0.198 0.214 0.16 0.176 1 0.134 0.435
0.003 0.092 0.112 0.072 0.187 0.134 1 -0.055
0.005 0.141 0.319 0.117 0.047 0.435 -0.055 1
0.103 0.131 -0.112 -0.187 0.13 -0.066 0.008 -0.136
0.016 0.042 0.11 0.075 0.112 0.28 -0.017 0.019
0.038 -0.096 0.133 -0.026 0.071 -0.009 -0.034 0.165
0.065 0.119 0.202 0.233 0.007 0.379 0.062 0.41
0.097 0.17 0.079 0.299 0.352 0.333 0.006 0.107



C15:0 TNFB CTSV ADA CD160
0 0.073 -0.024 0.312 0.223

0.017 0.012 0.083 0.089 0.082
-0.027 0.184 0.049 0.219 0.161
0.075 0.285 0.384 0.12 0.446
0.097 0.159 -0.042 0.043 0.158
0.003 0.089 -0.175 0.035 0.173
0.227 0.138 0.281 0.083 -0.018
0.103 0.016 0.038 0.065 0.097
0.131 0.042 -0.096 0.119 0.17
-0.112 0.11 0.133 0.202 0.079
-0.187 0.075 -0.026 0.233 0.299
0.13 0.112 0.071 0.007 0.352

-0.066 0.28 -0.009 0.379 0.333
0.008 -0.017 -0.034 0.062 0.006
-0.136 0.019 0.165 0.41 0.107

1 0.035 -0.012 -0.162 -0.001
0.035 1 0.048 0.204 0.275
-0.012 0.048 1 0.25 -0.087
-0.162 0.204 0.25 1 0.054
-0.001 0.275 -0.087 0.054 1



Table 4 SCF MAD HOMOLOG 5PPY FASLG FGF-5 CXCL1 MMP-10
SCF 1 0.136 -0.088 0.076 0.129 0.227 0.318
MAD HOMOLOG 5 0.136 1 -0.119 0.064 0.057 -0.029 -0.048
PPY -0.088 -0.119 1 0.169 0.15 -0.038 -0.002
FASLG 0.076 0.064 0.169 1 0.21 0.19 0.079
FGF-5 0.129 0.057 0.15 0.21 1 0.044 0.047
CXCL1 0.227 -0.029 -0.038 0.19 0.044 1 0.195
MMP-10 0.318 -0.048 -0.002 0.079 0.047 0.195 1
XPNPEP2 0.03 0.148 -0.047 0.179 0.123 -0.094 0.156
ESM-1 0.265 0.305 -0.006 0.149 0.067 0.01 -0.087
PHOSPHORIC ACID 0.05 0.067 -0.016 -0.011 0.09 -0.158 -0.111
PD-L1 0.363 0.061 0.235 0.229 0.28 0.317 0.499
EPHA2 0.382 0.271 0.148 0.347 0.218 0.197 0.352
FLT3L 0.395 0.105 0.102 0.098 0.253 0.263 0.348
4E-BP1 0.297 0.231 -0.014 0.107 0.18 0.202 0.101
TRAIL 0.66 0.244 -0.065 0.127 0.113 0.439 0.294
MCP-1 0.277 0.152 0.184 0.262 0.319 0.402 0.369
TLR3 -0.011 0.15 -0.017 0.149 0.178 0.126 0.047
CD27 0.131 0.133 -0.011 0.159 0.081 0.235 0.343
FGF-BP1 0.228 0.118 -0.147 -0.068 -0.073 0.066 0.076
HK14 0.159 0.157 -0.072 0.246 -0.068 0.319 0.209
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XPNPEP2 ESM-1 PHOSPHORIC ACIDPD-L1 EPHA2 FLT3L 4E-BP1 TRAIL
0.03 0.265 0.05 0.363 0.382 0.395 0.297 0.66

0.148 0.305 0.067 0.061 0.271 0.105 0.231 0.244
-0.047 -0.006 -0.016 0.235 0.148 0.102 -0.014 -0.065
0.179 0.149 -0.011 0.229 0.347 0.098 0.107 0.127
0.123 0.067 0.09 0.28 0.218 0.253 0.18 0.113

-0.094 0.01 -0.158 0.317 0.197 0.263 0.202 0.439
0.156 -0.087 -0.111 0.499 0.352 0.348 0.101 0.294

1 -0.169 0.063 0.119 0.151 0.145 0.2 -0.03
-0.169 1 -0.015 0.166 0.489 0.117 0.179 0.16
0.063 -0.015 1 -0.046 0.073 -0.066 0.082 -0.058
0.119 0.166 -0.046 1 0.525 0.635 0.316 0.484
0.151 0.489 0.073 0.525 1 0.358 0.165 0.431
0.145 0.117 -0.066 0.635 0.358 1 0.27 0.534

0.2 0.179 0.082 0.316 0.165 0.27 1 0.422
-0.03 0.16 -0.058 0.484 0.431 0.534 0.422 1
0.071 0.136 -0.015 0.519 0.368 0.507 0.579 0.466

0.02 0.029 -0.138 0.083 0.17 0.128 0.036 0.01
0.048 0.23 -0.166 0.452 0.642 0.159 0.054 0.217
0.004 0.072 -0.009 -0.053 0.064 0.043 0.067 0.134
0.121 0.196 -0.196 0.296 0.195 0.075 0.12 0.13



MCP-1 TLR3 CD27 FGF-BP1 HK14
0.277 -0.011 0.131 0.228 0.159
0.152 0.15 0.133 0.118 0.157
0.184 -0.017 -0.011 -0.147 -0.072
0.262 0.149 0.159 -0.068 0.246
0.319 0.178 0.081 -0.073 -0.068
0.402 0.126 0.235 0.066 0.319
0.369 0.047 0.343 0.076 0.209
0.071 0.02 0.048 0.004 0.121
0.136 0.029 0.23 0.072 0.196
-0.015 -0.138 -0.166 -0.009 -0.196
0.519 0.083 0.452 -0.053 0.296
0.368 0.17 0.642 0.064 0.195
0.507 0.128 0.159 0.043 0.075
0.579 0.036 0.054 0.067 0.12
0.466 0.01 0.217 0.134 0.13

1 0.042 0.155 0.03 0.121
0.042 1 0.138 -0.125 0.083
0.155 0.138 1 0.05 0.316
0.03 -0.125 0.05 1 0.239

0.121 0.083 0.316 0.239 1



Table 5
Table 5
Rank Student t-TestManual SelectionCorrelation AnalysisPaired t-Test

1 SCF SCF SCF SCF
2 MAD HOMOLOG 5MAD HOMOLOG 5MAD HOMOLOG 5FGF-5
3 FGF-5 FGF-5 FGF-5
4 FASLG FASLG FASLG
5 MMP-10 MMP-10 PPY
6 PPY XPNPEP2 XPNPEP2
7 XPNPEP2 FGF-21 FGF-21
8 FGF-21 CXL17 MCP-3
9 CXL17 MCP-3 FGF-BP1
10 MCP-3 ESM-1 C15:0
11 ESM-1 TNFB
12 HK11 CTSV
13 TRAIL CD160
14 FGF-BP1
15 EN-RAGE
16 C15:0
17 TNFB
18 CTSV
19 ADA
20 CD160
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Table 6
Table 6
Rank Random ForestManual SelectionCorrelation AnalysisPaired t-Test

1 SCF SCF SCF SCF
2 MAD HOMOLOG 5MAD HOMOLOG 5MAD HOMOLOG 5PPY
3 PPY PPY PPY
4 FASLG FASLG FASLG
5 FGF-5 FGF-5 FGF-5
6 CXCL1 MMP-10 CXCL1
7 MMP-10 XPNPEP2 XPNPEP2
8 XPNPEP2 ESM-1 PHOSPHORIC ACID
9 ESM-1 FLT3L TLR3
10 PHOSPHORIC ACIDHK14 CD27
11 PD-L1 FGF-BP1
12 EPHA2
13 FLT3L
14 4E-BP1
15 TRAIL
16 MCP-1
17 TLR3
18 CD27
19 FGF-BP1
20 HK14

Page 1
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