188 research outputs found
Two-gap superconductivity in single crystal LuFeSi from penetration depth measurements
Single crystal of LuFeSi was studied with the tunnel-diode
resonator technique in Meissner and mixed states. Temperature dependence of the
superfluid density provides strong evidence for the two-gap superconductivity
with almost equal contributions from each gap of magnitudes
and . In the vortex state, pinning
strength shows unusually strong temperature dependence and is non-monotonic
with the magnetic field (peak effect). The irreversibility line is sharply
defined and is quite distant from the , which hints on to enhanced
vortex fluctuations in this two-gap system. Altogether our findings provide
strong electromagnetic - measurements support to the two-gap superconductivity
in LuFeSi previously suggested from specific heat measurements
Rhodobium gokarnense sp. nov., a novel phototrophic alphaproteobacterium from a saltern
A pink-pigmented, phototrophic, purple nonsulfur bacterium, strain JA173T, was isolated in pure culture from a saltern in Gokarna, India, in a medium containing 2 % (w/v) NaCl. Strain JA173T was a non-motile Gram-negative rod that multiplied by budding. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain JA173T clusters with the class Alphaproteobacteria; highest sequence similarity (98 %) was to the type strain of Rhodobium orientis and 94 % similarity was observed to the 16S rRNA gene sequence of the type strain of Rhodobium marinum. However, DNAâDNA hybridization with R. orientis DSM 11290T revealed a relatedness value of only 35.1 % with strain JA173T. Strain JA173T contained lamellar internal membranes, bacteriochlorophyll a and carotenoids of the spirilloxanthin series. Strain JA173T had an obligate requirement for NaCl (optimum growth at 2â6 %, w/v) and grew photoheterotrophically with a number of organic compounds as carbon source or electron donor. Photoautotrophic, chemoautotrophic and fermentative growth could not be demonstrated. Yeast extract was required for growth. Based on 16S rRNA gene sequence analysis, DNAâDNA hybridization data and morphological and physiological characteristics, strain JA173T is sufficiently different from other species of the genus Rhodobium to be recognized as a representative of a novel species, Rhodobium gokarnense sp. nov. The type strain is JA173T (=ATCC BAA-1215T=DSM 17935T=JCM 13532T)
Transition to Long Range Magnetic Order in the Highly Frustrated Insulating Pyrochlore Antiferromagnet Gd_2Ti_2O_7
Experimental evidence from measurements of the a.c. and d.c. susceptibility,
and heat capacity data show that the pyrochlore structure oxide, Gd_2Ti_2O_7,
exhibits short range order that starts developing at 30K, as well as long range
magnetic order at K. The Curie-Weiss temperature, =
-9.6K, is largely due to exchange interactions. Deviations from the Curie-Weiss
law occur below 10K while magnetic heat capacity contributions are found
at temperatures above 20K. A sharp maximum in the heat capacity at K
signals a transition to a long range ordered state, with the magnetic specific
accounting for only 50% of the magnetic entropy. The heat capacity above
the phase transition can be modeled by assuming that a distribution of random
fields acts on the ground state for Gd. There is no
frequency dependence to the a.c. susceptibility in either the short range or
long range ordered regimes, hence suggesting the absence of any spin-glassy
behavior. Mean field theoretical calculations show that no long range ordered
ground state exists for the conditions of nearest-neighbor antiferromagnetic
exchange and long range dipolar couplings. At the mean-field level, long range
order at various commensurate or incommensurate wave vectors is found only upon
inclusion of exchange interactions beyond nearest-neighbor exchange and dipolar
coupling. The properties of Gd$_2Ti_2O_7 are compared with other geometrically
frustrated antiferromagnets such as the Gd_3Ga_5O_{12} gadolinium gallium
garnet, RE_2Ti_2O_7 pyrochlores where RE = Tb, Ho and Tm, and Heisenberg-type
pyrochlore such as Y_2Mo_2O_7, Tb_2Mo_2O_7, and spinels such as ZnFe_2O_4Comment: Letter, 6 POSTSCRIPT figures included. (NOTE: Figure 5 is not
included --) To appear in Physical Review B. Contact:
[email protected]
Marichromatium bheemlicum sp. nov., a non-diazotrophic photosynthetic gammaproteobacterium from a marine aquaculture pond
A rod-shaped, phototrophic, purple sulfur bacterium, strain JA124(T), was isolated in pure culture from a marine aquaculture pond, located near Bhimunipatnam, in a medium that contained 3 % NaCl (w/v). Strain JA124(T) is a Gram-negative, motile rod with a single polar flagellum. Strain JA124(T) has a requirement for NaCl, with optimum growth at 1.5-8.5 %, and tolerates up to 11 % NaCl. Intracellular photosynthetic membranes are of the vesicular type. Bacteriochlorophyll a and probably carotenoids of the spirilloxanthin series are present as photosynthetic pigments. Strain JA124(T) was able to utilize sulfide, sulfate, thiosulfate, sulfite, thioglycollate and cysteine as sulfur sources. Strain JA124(T) was able to grow photolithoautotrophically, photolithoheterotrophically and photo-organoheterotrophically. Chemotrophic and fermentative growth could not be demonstrated. Strain JA124(T) lacks diazotrophic growth and acetylene reduction activity. Pyridoxal phosphate is required for growth. During growth on reduced sulfur sources as electron donors, sulfur is deposited intermediately as a number of small granules within the cell. Phylogenetic analysis on the basis of 16S rRNA gene sequences showed that strain JA124(T) clusters with species of the genus Marichromatium belonging to the class Gammaproteobacteria. The highest sequence similarities of strain JA124(T) were found with the type strains of Marichromatium indicum (98 %), Marichromatium purpuratum (95 %) and Marichromatium gracile (93 %). However, DNA-DNA hybridization with Marichromatium indicum DSM 15907(T) revealed relatedness of only 65 % with strain JA124(T). The DNA base composition of strain JA124(T) was 67 mol% G+C (by HPLC). Based on 16S rRNA gene sequence analysis, morphological and physiological characteristics and DNA-DNA hybridization studies, strain JA124(T) (=ATCC BAA-1316(T)=JCM 13911(T)) is sufficiently different from other Marichromatium species to merit its description as the type strain of a novel species, Marichromatium bheemlicum sp. nov
Actinopolyspora algeriensis sp. nov., a novel halophilic actinomycete isolated from a Saharan soil
A halophilic actinomycete strain designated H19T, was isolated from a Saharan soil in the Bamendil region (Ouargla province, South Algeria) and was characterized taxonomically by using a polyphasic approach. The morphological and chemotaxonomic characteristics of the
strain were consistent with those of members of the genus
Actinopolyspora, and 16S rRNA gene sequence analysis confirmed that strain H19T was a novel species of the genus
Actinopolyspora. DNAâDNA hybridization value between strain H19T and the nearest Actinopolyspora species, A. halophila, was clearly below the 70 % threshold. The genotypic and phenotypic data showed that the organism represents a novel species of the genus Actinopolyspora for which the name Actinopolyspora algeriensis sp. nov. is proposed, with the type strain H19T (= DSM 45476T = CCUG 62415T)
Advanced nursing practice and research contributions to precision medicine
Genomic discoveries in the era of precision medicine hold the promise for tailoring healthcare, symptom management, and research efforts including targeting rare and common diseases through the identification and implementation of genomic-based risk assessment, treatment, and management. However, the translation of these discoveries into tangible benefits for the health of individuals, families, and the public is evolving.; In this article, members of the Genetics Expert Panel identify opportunities for action to increase advanced practice nursing and research contributions toward improving genomic health for all individuals and populations.; Identified opportunities are within the areas of: bolstering genomic focused advanced practice registered nurse practice, research and education efforts; deriving new knowledge about disease biology, risk assessment, treatment efficacy, drug safety and self-management; improving resources and systems that combine genomic information with other healthcare data; and advocating for patient and family benefits and equitable access to genomic healthcare resources
Functional ultrasound imaging for assessment of extracellular matrix scaffolds used for liver organoid formation
A method of 3D functional ultrasound imaging has been developed to enable non-destructive assessment of extracellular matrix scaffolds that have been prepared by decellularization protocols and are intended for recellularization to create organoids. A major challenge in organ decellularization is retaining patent micro-vascular structures crucial for nutrient access and functionality of organoids. The imaging method described here provides statistical distributions of flow rates throughout the tissue volumes, 3D vessel network architecture visualization, characterization of microvessel volumes and sizes, and delineation of matrix from vascular circuits. The imaging protocol was tested on matrix scaffolds that are tissue-specific, but not species-specific, matrix extracts, prepared by a process that preserved >98% of the collagens, collagen-associated matrix components, and matrix-bound growth factors and cytokines. Image-derived data are discussed with respect to assessment of scaffolds followed by proof-of-concept studies in organoid establishment using Hep3B, human hepatoblast-like cells. Histology showed that the cells attached to scaffolds with patent vasculature within minutes, achieved engraftment at near 100%, expressed liver-specific functions within 24h, and yielded evidence of proliferation and increasing differentiation of cells throughout the two weeks of culture studies. This imaging method should prove valuable in analyses of such matrix scaffolds
- âŠ