14 research outputs found

    Determining subpopulation methylation profiles from bisulfite sequencing data of heterogeneous samples using DXM

    Get PDF
    Epigenetic changes, such as aberrant DNA methylation, contribute to cancer clonal expansion and disease progression. However, identifying subpopulation-level changes in a heterogeneous sample remains challenging. Thus, we have developed a computational approach, DXM, to deconvolve the methylation profiles of major allelic subpopulations from the bisulfite sequencing data of a heterogeneous sample. DXM does not require prior knowledge of the number of subpopulations or types of cells to expect. We benchmark DXM\u27s performance and demonstrate improvement over existing methods. We further experimentally validate DXM predicted allelic subpopulation-methylation profiles in four Diffuse Large B-Cell Lymphomas (DLBCLs). Lastly, as proof-of-concept, we apply DXM to a cohort of 31 DLBCLs and relate allelic subpopulation methylation profiles to relapse. We thus demonstrate that DXM can robustly find allelic subpopulation methylation profiles that may contribute to disease progression using bisulfite sequencing data of any heterogeneous sample

    Enhancer Sequence Variants and Transcription-Factor Deregulation Synergize to Construct Pathogenic Regulatory Circuits in B-Cell Lymphoma

    Get PDF
    SummaryMost B-cell lymphomas arise in the germinal center (GC), where humoral immune responses evolve from potentially oncogenic cycles of mutation, proliferation, and clonal selection. Although lymphoma gene expression diverges significantly from GC B cells, underlying mechanisms that alter the activities of corresponding regulatory elements (REs) remain elusive. Here we define the complete pathogenic circuitry of human follicular lymphoma (FL), which activates or decommissions REs from normal GC B cells and commandeers enhancers from other lineages. Moreover, independent sets of transcription factors, whose expression was deregulated in FL, targeted commandeered versus decommissioned REs. Our approach revealed two distinct subtypes of low-grade FL, whose pathogenic circuitries resembled GC B or activated B cells. FL-altered enhancers also were enriched for sequence variants, including somatic mutations, which disrupt transcription-factor binding and expression of circuit-linked genes. Thus, the pathogenic regulatory circuitry of FL reveals distinct genetic and epigenetic etiologies for GC B-cell transformation

    Loss of synergistic transcriptional feedback loops drives diverse B-cell cancers

    Get PDF
    BACKGROUND: The most common B-cell cancers, chronic lymphocytic leukemia/lymphoma (CLL), follicular and diffuse large B-cell (FL, DLBCL) lymphomas, have distinct clinical courses, yet overlapping cell-of-origin . Dynamic changes to the epigenome are essential regulators of B-cell differentiation. Therefore, we reasoned that these distinct cancers may be driven by shared mechanisms of disruption in transcriptional circuitry. METHODS: We compared purified malignant B-cells from 52 patients with normal B-cell subsets (germinal center centrocytes and centroblasts, naïve and memory B-cells) from 36 donor tonsils using \u3e325 high-resolution molecular profiling assays for histone modifications, open chromatin (ChIP-, FAIRE-seq), transcriptome (RNA-seq), transcription factor (TF) binding, and genome copy number (microarrays). FINDINGS: From the resulting data, we identified gains in active chromatin in enhancers/super-enhancers that likely promote unchecked B-cell receptor signaling, including one we validated near the immunoglobulin superfamily receptors FCMR and PIGR. More striking and pervasive was the profound loss of key B-cell identity TFs, tumor suppressors and their super-enhancers, including EBF1, OCT2(POU2F2), and RUNX3. Using a novel approach to identify transcriptional feedback, we showed that these core transcriptional circuitries are self-regulating. Their selective gain and loss form a complex, iterative, and interactive process that likely curbs B-cell maturation and spurs proliferation. INTERPRETATION: Our study is the first to map the transcriptional circuitry of the most common blood cancers. We demonstrate that a critical subset of B-cell TFs and their cognate enhancers form self-regulatory transcriptional feedback loops whose disruption is a shared mechanism underlying these diverse subtypes of B-cell lymphoma. FUNDING: National Institute of Health, Siteman Cancer Center, Barnes-Jewish Hospital Foundation, Doris Duke Foundation

    Processing Status Information

    No full text
    The authors compare variant formulations (different from those considered in 1990-1) for predicting the processing of status information. The main competitor considered argued that highly relevant information would eliminate effects of less relevant information. Results from a vignette study confirmed predictions of the original status theory and disconfirmed predictions of the competing theory. This WP was published by the authors (1992).This paper was prepared while the first author was a Postdoctoral Scholar at Stanford University supported by PHS Grant #2-T32-MH14243-12. The research reported herein was conducted at San Jose State University during the Spring of 1988

    Ibrutinib-rituximab or chemoimmunotherapy for chronic lymphocytic leukemia

    No full text
    BACKGROUND: Data regarding the efficacy of treatment with ibrutinib-rituximab, as compared with standard chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab, in patients with previously untreated chronic lymphocytic leukemia (CLL) have been limited. METHODS: In a phase 3 trial, we randomly assigned (in a 2:1 ratio) patients 70 years of age or younger with previously untreated CLL to receive either ibrutinib and rituximab for six cycles (after a single cycle of ibrutinib alone), followed by ibrutinib until disease progression, or six cycles of chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab. The primary end point was progression-free survival, and overall survival was a secondary end point. We report the results of a planned interim analysis. RESULTS: A total of 529 patients underwent randomization (354 patients to the ibrutinib-rituximab group, and 175 to the chemoimmunotherapy group). At a median follow-up of 33.6 months, the results of the analysis of progression-free survival favored ibrutinib-rituximab over chemoimmunotherapy (89.4% vs. 72.9% at 3 years; hazard ratio for progression or death, 0.35; 95% confidence interval [CI], 0.22 to 0.56; P CONCLUSIONS: The ibrutinib-rituximab regimen resulted in progression-free survival and overall survival that were superior to those with a standard chemoimmunotherapy regimen among patients 70 years of age or younger with previously untreated CLL. (Funded by the National Cancer Institute and Pharmacyclics; E1912 ClinicalTrials.gov number, NCT02048813.)
    corecore