494 research outputs found
Patterns of regional cerebellar atrophy in genetic frontotemporal dementia
BACKGROUND: Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder with a strong genetic component. The cerebellum has not traditionally been felt to be involved in FTD but recent research has suggested a potential role. METHODS: We investigated the volumetry of the cerebellum and its subregions in a cohort of 44 patients with genetic FTD (20 MAPT, 7 GRN, and 17 C9orf72 mutation carriers) compared with 18 cognitively normal controls. All groups were matched for age and gender. On volumetric T1-weighted magnetic resonance brain images we used an atlas propagation and label fusion strategy of the Diedrichsen cerebellar atlas to automatically extract subregions including the cerebellar lobules, the vermis and the deep nuclei. RESULTS: The global cerebellar volume was significantly smaller in C9orf72 carriers (mean (SD): 99989 (8939) mm(3)) compared with controls (108136 (7407) mm(3)). However, no significant differences were seen in the MAPT and GRN carriers compared with controls (104191 (6491) mm(3) and 107883 (6205) mm(3) respectively). Investigating the individual subregions, C9orf72 carriers had a significantly lower volume than controls in lobule VIIa-Crus I (15% smaller, p < 0.0005), whilst MAPT mutation carriers had a significantly lower vermal volume (10% smaller, p = 0.001) than controls. All cerebellar subregion volumes were preserved in GRN carriers compared with controls. CONCLUSION: There appears to be a differential pattern of cerebellar atrophy in the major genetic forms of FTD, being relatively spared in GRN, localized to the lobule VIIa-Crus I in the superior-posterior region of the cerebellum in C9orf72, the area connected via the thalamus to the prefrontal cortex and involved in cognitive function, and localized to the vermis in MAPT, the 'limbic cerebellum' involved in emotional processing
The TMEM106B risk allele is associated with lower cortical volumes in a clinically diagnosed frontotemporal dementia cohort
Hippocampal subfield volumetry: differential pattern of atrophy in different forms of genetic frontotemporal dementia
BACKGROUND: Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder, with a strong genetic component. Previous research has shown that medial temporal lobe atrophy is a common feature of FTD. However, no study has so far investigated the differential vulnerability of the hippocampal subfields in FTD.
OBJECTIVES: We aimed to investigate hippocampal subfield volumes in genetic FTD.
METHODS: We in6/2/2018vestigated hippocampal subfield volumes in a cohort of 75 patients with genetic FTD (age: mean (standard deviation) 59.3 (7.7) years; disease duration: 5.1(3.4) years; 29 with MAPT, 28 with C9orf72, and 18 with GRN mutations) compared with 97 age-matched controls (age: 62.1 (11.1) years). We performed a segmentation of their volumetric T1-weighted MRI scans to extract hippocampal subfields volumes. Left and right volumes were summed and corrected for total intracranial volumes.
RESULTS: All three groups had smaller hippocampi than controls. The MAPT group had the most atrophic hippocampi, with the subfields showing the largest difference from controls being CA1-4 (24–27%, p < 0.0005). For C9orf72, the CA4, CA1, and dentate gyrus regions (8–11%, p < 0.0005), and for GRN the presubiculum and subiculum (10–14%, p < 0.0005) showed the largest differences from controls.
CONCLUSIONS: The hippocampus was affected in all mutation types but a different pattern of subfield involvement was found in the three genetic groups, consistent with differential cortical-subcortical network vulnerability
Detailed volumetric analysis of the hypothalamus in behavioral variant frontotemporal dementia
Abnormal eating behaviors are frequently reported in behavioral variant frontotemporal dementia (bvFTD). The hypothalamus is the regulatory center for feeding and satiety but its involvement in bvFTD has not been fully clarified, partly due to its difficult identification on MR images. We measured hypothalamic volume in 18 patients with bvFTD (including 9 MAPT and 6 C9orf72 mutation carriers) and 18 cognitively normal controls using a novel optimized multimodal segmentation protocol, combining 3D T1 and T2-weighted 3T MRIs (intrarater intraclass correlation coefficients ≥0.93). The whole hypothalamus was subsequently segmented into five subunits: the anterior (superior and inferior), tuberal (superior and inferior), and posterior regions. The presence of abnormal eating behavior was assessed with the revised version of the Cambridge Behavioural Inventory (CBI-R). The bvFTD group showed a 17 % lower hypothalamic volume compared with controls (p < 0.001): mean 783 (standard deviation 113) versus 944 (73) mm(3) (corrected for total intracranial volume). In the hypothalamic subunit analysis, the superior parts of the anterior and tuberal regions and the posterior region were significantly smaller in the bvFTD group compared with controls. There was a trend for a smaller hypothalamic volume, particularly in the superior tuberal region, in those with severe eating disturbance scores on the CBI-R. Differences were seen between the two genetic subgroups with significantly smaller volumes in the MAPT but not the C9orf72 group compared with controls. In summary, bvFTD patients had lower hypothalamic volumes compared with controls. Different genetic mutations may have a differential impact on the hypothalamus
Thalamic nuclei in frontotemporal dementia: Mediodorsal nucleus involvement is universal but pulvinar atrophy is unique to C9orf72
Thalamic atrophy is a common feature across all forms of FTD but little is known about specific nuclei involvement. We aimed to investigate in vivo atrophy of the thalamic nuclei across the FTD spectrum. A cohort of 402 FTD patients (age: mean(SD) 64.3(8.2) years; disease duration: 4.8(2.8) years) was compared with 104 age‐matched controls (age: 62.5(10.4) years), using an automated segmentation of T1‐weighted MRIs to extract volumes of 14 thalamic nuclei. Stratification was performed by clinical diagnosis (180 behavioural variant FTD (bvFTD), 85 semantic variant primary progressive aphasia (svPPA), 114 nonfluent variant PPA (nfvPPA), 15 PPA not otherwise specified (PPA‐NOS), and 8 with associated motor neurone disease (FTD‐MND), genetic diagnosis (27 MAPT, 28 C9orf72, 18 GRN), and pathological confirmation (37 tauopathy, 38 TDP‐43opathy, 4 FUSopathy). The mediodorsal nucleus (MD) was the only nucleus affected in all FTD subgroups (16–33% smaller than controls). The laterodorsal nucleus was also particularly affected in genetic cases (28–38%), TDP‐43 type A (47%), tau‐CBD (44%), and FTD‐MND (53%). The pulvinar was affected only in the C9orf72 group (16%). Both the lateral and medial geniculate nuclei were also affected in the genetic cases (10–20%), particularly the LGN in C9orf72 expansion carriers. Use of individual thalamic nuclei volumes provided higher accuracy in discriminating between FTD groups than the whole thalamic volume. The MD is the only structure affected across all FTD groups. Differential involvement of the thalamic nuclei among FTD forms is seen, with a unique pattern of atrophy in the pulvinar in C9orf72 expansion carriers
Self-Enforcing Access Control for Encrypted RDF
The amount of raw data exchanged via web protocols is
steadily increasing. Although the Linked Data infrastructure could
potentially be used to selectively share RDF data with different individuals
or organisations, the primary focus remains on the unrestricted
sharing of public data. In order to extend the Linked Data paradigm to
cater for closed data, there is a need to augment the existing infrastructure
with robust security mechanisms. At the most basic level both access
control and encryption mechanisms are required. In this paper, we propose
a flexible and dynamic mechanism for securely storing and efficiently
querying RDF datasets. By employing an encryption strategy based on
Functional Encryption (FE) in which controlled data access does not
require a trusted mediator, but is instead enforced by the cryptographic
approach itself, we allow for fine-grained access control over encrypted
RDF data while at the same time reducing the administrative overhead
associated with access control management
Solar-type dynamo behaviour in fully convective stars without a tachocline
In solar-type stars (with radiative cores and convective envelopes), the
magnetic field powers star spots, flares and other solar phenomena, as well as
chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The
dynamo responsible for generating the field depends on the shearing of internal
magnetic fields by differential rotation. The shearing has long been thought to
take place in a boundary layer known as the tachocline between the radiative
core and the convective envelope. Fully convective stars do not have a
tachocline and their dynamo mechanism is expected to be very different,
although its exact form and physical dependencies are not known. Here we report
observations of four fully convective stars whose X-ray emission correlates
with their rotation periods in the same way as in Sun-like stars. As the X-ray
activity - rotation relationship is a well-established proxy for the behaviour
of the magnetic dynamo, these results imply that fully convective stars also
operate a solar-type dynamo. The lack of a tachocline in fully convective stars
therefore suggests that this is not a critical ingredient in the solar dynamo
and supports models in which the dynamo originates throughout the convection
zone.Comment: 6 pages, 1 figure. Accepted for publication in Nature (28 July 2016).
Author's version, including Method
Basal forebrain atrophy in frontotemporal dementia
Background: The basal forebrain is a subcortical structure that plays an important role in learning, attention, and memory. Despite the known subcortical involvement in frontotemporal dementia (FTD), there is little research into the role of the basal forebrain in this disease. We aimed to investigate differences in basal forebrain volumes between clinical, genetic, and pathological diagnoses of FTD. /
Methods: 356 patients with FTD were recruited from the UCL Dementia Research Centre and matched on age and gender with 83 cognitively normal controls. All subjects had a T1-weighted MR scan suitable for analysis. Basal forebrain volumes were calculated using the Geodesic Information Flow (GIF) parcellation method and were compared between clinical (148 bvFTD, 82 svPPA, 103 nfvPPA, 14 PPA-NOS, 9 FTD-MND), genetic (24 MAPT, 15 GRN, 26 C9orf72) and pathological groups (28 tau, 3 FUS, 35 TDP-43) and controls. A subanalysis was also performed comparing pathological subgroups of tau (11 Pick's disease, 6 FTDP-17, 7 CBD, 4 PSP) and TDP-43 (12 type A, 2 type B, 21 type C). /
Results: All clinical subtypes of FTD showed significantly smaller volumes than controls (p≤ 0.010, ANCOVA), with svPPA (10% volumetric difference) and bvFTD (9%) displaying the smallest volumes. Reduced basal forebrain volumes were also seen in MAPT mutations (18%, p<0.0005) and in individuals with pathologically confirmed FTDP-17 (17%), Pick's disease (12%), and TDP-43 type C (8%) (p<0.001). /
Conclusion: Involvement of the basal forebrain is a common feature in FTD, although the extent of volume reduction differs between clinical, genetic, and pathological diagnoses. Tauopathies, particularly those with MAPT mutations, had the smallest volumes. However, atrophy was also seen in those with TDP-43 type C pathology (most of whom have svPPA clinically). This suggests that the basal forebrain is vulnerable to multiple types of FTD-associated protein inclusions
Amygdala subnuclei are differentially affected in the different genetic and pathological forms of frontotemporal dementia
Introduction
Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder with multiple genetic and pathological causes. It is characterized by both cortical and subcortical atrophies, with previous studies showing early involvement of the amygdala. However, no prior study has specifically investigated the atrophy of different subnuclei of the amygdala.
Methods
Using an automated segmentation tool for T1-weighted volumetric magnetic resonance imaging, we investigated amygdalar subnuclei (AS) involvement in a cohort of 132 patients with genetic or pathologically confirmed FTD (age: mean = 61 years (standard deviation = 8); disease duration: 5 (3) years) compared with 107 age-matched controls.
Results
AS were affected in all genetic and pathological forms of FTD. MAPT mutations/FTDP-17, Pick's disease, and transactive response DNA binding protein 43 kDa type C were the forms with the smallest amygdala (35%–50% smaller than controls in the most affected hemisphere, P < .0005). In most FTD groups, medial subnuclei (particularly the superficial, accessory basal and basal/paralaminar subnuclei) tended to be affected more than the lateral subnuclei, except for the progressive supranuclear palsy group, in which the corticoamygdaloid transition area was the least-affected area.
Discussion
Differential involvement of the AS was seen in the different genetic and pathological forms of FTD. In general, the most affected subnuclei were the superficial, accessory basal and basal/paralaminar subnuclei, which form part of a network of regions that control reward and emotion regulation, functions known to be particularly affected in FTD
The incidence of other gastroenterological disease following diagnosis of irritable bowel syndrome in the UK: a cohort study
BACKGROUND: Guidelines recommend Irritable Bowel Syndrome (IBS) diagnosis and management in primary care with minimal investigations; however little evidence exists regarding risk of organic gastrointestinal conditions following diagnosis of IBS and how such risks vary over the long term. This study assesses excess incidence of coeliac disease, inflammatory bowel disease (IBD) and colorectal cancer (CRC) and variation with age and time after IBS diagnosis.
METHODS: IBS patients and controls were identified within the UK Clinical Practice Research Dataset. Incidence rates were calculated and stratified by age and time since IBS diagnosis with incident rate ratios generated.
RESULTS: Fifteen years after IBS diagnosis there is a significant cumulative excess incidence of coeliac disease, IBD and CRC in IBS of 3.7% compared to 1.7% in controls. For every 10000 patient years, IBS patients experienced an additional 4 diagnoses of coeliac disease, 13 of IBD and 4 CRCs. In each condition peak excess incidence was in the 6 months following diagnosis. After one year, increased incidence of coeliac disease remained consistent without variation by age. IBD incidence fell slowly, with higher rates in those under 30. CRC incidence was increased only in patients aged 30 to 74 during the first 5 years.
CONCLUSION: Some IBS patients later receive organic gastrointestinal diagnoses, with the early excess incidence likely detected during diagnostic investigation at the time of IBS diagnosis. More than 5 years after IBS diagnosis there is no increased risk of CRC compared to the general population, but a small excess risk of coeliac disease and IBD persists. Overall, though our findings provide reassurance that non-specialists, especially those in primary care, are unlikely to be missing an organic condition in the majority of their patients. This suggests that current guidelines suggesting avoidance of universal referral for these patients are appropriate
- …
