
ePubWU Institutional Repository

Javier Fernández and Sabrina Kirrane and Axel Polleres and Simon Steyskal

Self-Enforcing Access Control for Encrypted RDF

Book Section (Accepted for Publication)
(Refereed)

Original Citation:
Fernández, Javier and Kirrane, Sabrina and Polleres, Axel and Steyskal, Simon (2017) Self-
Enforcing Access Control for Encrypted RDF. In: The Semantic Web: 14th International Conference,
ESWC 2017. Lecture Notes in Computer Science, vol 10249, Springer International Publishing AG
, Cham. pp. 607-622. ISBN 978-3-319-58068-5

This version is available at: http://epub.wu.ac.at/5818/
Available in ePubWU: October 2017

ePubWU, the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

This document is the version accepted for publication and — in case of peer review — incorporates
referee comments.

http://epub.wu.ac.at/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elektronische Publikationen der Wirtschaftsuniversität Wien

https://core.ac.uk/display/130093092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://epub.wu.ac.at/5818/
http://epub.wu.ac.at/

Self-Enforcing Access Control
for Encrypted RDF

Javier D. Fernández1,2, Sabrina Kirrane1, Axel Polleres1,2,
and Simon Steyskal1,3(B)

1 Vienna University of Economics and Business, Vienna, Austria
{javier.fernandez,sabrina.kirrane,axel.polleres,

simon.steyskal}@wu.ac.at
2 Complexity Science Hub Vienna, Vienna, Austria

3 Siemens AG Österreich, Vienna, Austria

Abstract. The amount of raw data exchanged via web protocols is
steadily increasing. Although the Linked Data infrastructure could
potentially be used to selectively share RDF data with different indi-
viduals or organisations, the primary focus remains on the unrestricted
sharing of public data. In order to extend the Linked Data paradigm to
cater for closed data, there is a need to augment the existing infrastruc-
ture with robust security mechanisms. At the most basic level both access
control and encryption mechanisms are required. In this paper, we pro-
pose a flexible and dynamic mechanism for securely storing and efficiently
querying RDF datasets. By employing an encryption strategy based on
Functional Encryption (FE) in which controlled data access does not
require a trusted mediator, but is instead enforced by the cryptographic
approach itself, we allow for fine-grained access control over encrypted
RDF data while at the same time reducing the administrative overhead
associated with access control management.

1 Introduction

The Linked Data infrastructure could potentially be used not only to distribut-
edly share public data, but also to selectively share data, perhaps of a sensitive
nature (e.g., personal data, health data, financial data, etc.), with specific indi-
viduals or organisations (i.e., closed data). In order to realise this vision, we
must first extend the existing Linked Data infrastructure with suitable secu-
rity mechanisms. More specifically, encryption is needed to protect data in case
the server is compromised, while access control is needed to ensure that only
authorised individuals can access specific data. Apart from the need to protect
data, robustness in terms of usability, performance, and scalability is a major
consideration.

Supported by the Austrian Science Fund (FWF): M1720-G11, the Austrian Research
Promotion Agency (FFG) under grant 845638, and European Union’s Horizon 2020
research and innovation programme under grant 731601.

c© Springer International Publishing AG 2017
E. Blomqvist et al. (Eds.): ESWC 2017, Part I, LNCS 10249, pp. 607–622, 2017.
DOI: 10.1007/978-3-319-58068-5 37

608 J.D. Fernández et al.

However, current encryption techniques for RDF are still very limited, espe-
cially with respect to the flexible maintenance and querying of encrypted data in
light of user access control policies. Initial partial encryption techniques [16,17]
focus on catering for both plain and encrypted data in the same representation
and how to incorporate the metadata necessary for decryption. More recently,
[21] proposed the generation of multiple ciphertexts per triple (i.e. each triple
is encrypted multiple times depending on whether or not access to the subject,
predicate and/or object is restricted) and the distribution of several keys to users.
Although finer-grained access control is supported, the maintenance of multiple
ciphertexts (i.e. encrypted triples) and keys presents scalability challenges. Addi-
tionally, such an approach, or likewise term-based encryption of RDF graphs,
means that the structure of parts of the graph that should not be accessible
could potentially be recovered, thus posing a security risk (cf. for instance [32]).

Beyond RDF, novel cryptography mechanisms have been developed that
enable the flexible specification and enforcement of access policies over encrypted
data. Predicate-based Encryption (PBE) [22] – which we refer to as Functional
Encryption (FE) in order to avoid confusion with RDF predicates – enables
searching over encrypted data, mainly for keywords or the conjunction of key-
word queries, while alleviating the re-encryption burden associated with adding
additional data.

Herein, we extend recent findings on FE to RDF, and demonstrate how
FE can be used for fine-grained access control based on triples patterns over
encrypted RDF datasets. Summarising our contributions, we: (i) adapt func-
tional encryption to RDF such that it is possible to enforce access control over
encrypted RDF data in a self-enforcing manner; (ii) demonstrate how encryp-
tion keys based on triple patterns can be used to specify flexible access control
for Linked Data sources; and (iii) propose and evaluate indexing strategies that
enhance query performance and scalability. Experiments show reasonable load-
ing and query performance overheads with respect to traditional, non-encrypted
data retrieval. The remainder of the paper is structured as follows: We discuss
related work and potential alternatives to our proposal in Sect. 2. The details of
our specific approach and optimisations are presented in Sects. 3 and 4 respec-
tively, and evaluated in Sect. 5. Finally, we conclude and outline directions for
future work in Sect. 6.

2 Related Work

When it comes to access control for RDF, broadly speaking researchers have
focused on representing existing access control models and standards using
semantic technology; proposing new access control models suitable for open,
heterogeneous and distributed environments; and devising languages and frame-
works that can be used to facilitate access control policy specification and main-
tenance. Kirrane et al. [23] provide a comprehensive survey of existing access
control proposals for RDF. Unlike access control, encryption techniques for RDF

Self-Enforcing Access Control for Encrypted RDF 609

has received very little attention to date. Giereth [17] demonstrate how public-
key encryption techniques can be used to partially encryption RDF data rep-
resented using XML. While, Giereth [17] and Gerbracht [16] propose strategies
for combining partially encrypted RDF data with the metadata that is neces-
sary for decryption. Kasten et al. [21] propose a framework that can be used
to query encrypted data. In order to support SPARQL queries based on triple
patterns each triple is encrypted eight times according to the eight different
binding possibilities. Limitations of the approach include the blowup associated
with maintaining eight ciphers per triple and the fact that the structure of the
graph is still accessible.

Searchable Symmetric Encryption (SSE) [9] has been extensively applied
in database-as-a-service and cloud environments. SSE techniques focus on the
encryption of outsourced data such that an external user can encrypt their query
and subsequently evaluate it against the encrypted data. More specifically, SSE
extracts the key features of a query (the data structures that allow for its resolu-
tion) and encrypts them such that it can be efficiently evaluated on the encrypted
data. Extensive work has been done in basic SSE, which caters for a single key-
word [6]. Recent improvements have been proposed to handle conjunctive search
over multiple keywords [5], and to optimise the resolution to cater for large scale
data in the presence of updates [4,20,30]. However, all of these works focus on
keyword-based retrieval, whereas structured querying (such as SPARQL) over
encrypted RDF datasets would require (at least) an unrestricted set of triple
query patterns. In contrast, Fully Homomorphic Encryption (FHE) [15] allows
any general circuit/computation over encrypted data, however it is prohibitively
slow for most operations [7,28]. Thus, practical, encryption databases such as
CryptDB [28] make use of lighter forms of encryption that still cater for com-
putations (such as sums) over the encrypted data [27], at the cost of different
vulnerability/feasibility trade-offs. Recently, predicate encryption [22], whereby
predicates correspond to the evaluation of disjunctions, polynomial equations
and inner products, enables security in light of unrestricted queries. Predicate
encryption has a proven track record of efficiency in terms of conjunctive equal-
ity, range and subset queries.

The solution we propose builds on an existing work that defines access control
policies based on RDF patterns that are in turn enforced over RDF datasets
[23]. While existing proposals enforce access control over plain RDF data via
data filtering (i.e., a query is executed against a dataset which is generated by
removing the unauthorised data) or query rewriting (i.e., a query is updated
so that unauthorised data will not be returned and subsequently executed over
the unmodified dataset), we demonstrate how functional encryption can be used
to enforce access control over encrypted RDF data in a self-enforcing manner
(i.e., without the need for either data filtering or query rewriting nor a trusted
mediator). Unlike previous approaches we store one cipher per triple and employ
indexing strategies based on secure hashes (cf. PBKDF2 [19]) that can be used
for efficient querying of encrypted RDF. In addition, we propose a mechanism to
obfuscate the graph structure with real indexes and dummy ciphers that cannot

610 J.D. Fernández et al.

be decrypted, making the dummy hashes and ciphers indistinguishable from real
hashes and ciphers.

3 Secure and Fine-Grained Encryption of RDF

Common public-key encryption schemes usually follow an all-or-nothing app-
roach (i.e., given a particular decryption key, a ciphertext can either be decrypted
or not) which in turn requires users to manage a large amount of keys, espe-
cially if there is a need for more granular data encryption [2]. Recent advances
in public-key cryptography, however, have led to a new family of encryption
schemes called Functional Encryption (FE) which addresses aforementioned
issue by making encrypted data self-enforce its access restrictions, hence, allow-
ing for fine-grained access over encrypted information. In a functional encryp-
tion scheme, each decryption key is associated with a boolean function and each
ciphertext is associated with an element of some attribute space Σ; a decryp-
tion key corresponding to a boolean function f is able to decrypt a particular
ciphertext associated with I ∈ Σ iff f(I) = 1. A functional encryption scheme
is defined as a tuple of four distinct algorithms (Setup, Enc, KeyGen, Dec)
such that:

Setup is used for generating a master public and master secret key pair.
Enc encrypts a plaintext message m given the master public key and an element

I ∈ Σ. It returns a ciphertext c.
KeyGen takes as input the master secret key and generates a decryption key

(i.e., secret key) SKf for a given boolean function f .
Dec takes as input a secret key SKf and a ciphertext c. It extracts I from c

and computes f(I).

3.1 A Functional Encryption Scheme for RDF

While there exist various different approaches for realising functional encryption
schemes, we build upon the work of Katz et al. [22] in which functions correspond
to the computation of inner-products over ZN (for some large integer N). In
their construction, they use Σ = Zn

N as set of possible ciphertext attributes
of length n and F = {f�x|�x ∈ Zn

N} as the class of decryption key functions.
Each ciphertext is associated with a (secret) attribute vector �y ∈ Σ and each
decryption key corresponds to a vector �x that is incorporated into its respective
boolean function f�x ∈ F where f�x(�y) = 1 iff

∑n
i=1 yixi = 0.

In the following, we discuss how this encryption scheme can be utilised (i.e.,
its algorithms adopted1) to provide fine-grained access over encrypted RDF
triples. Thus, allow for querying encrypted RDF using triple patterns such that
a particular decryption key can decrypt all triples that satisfy a particular triple
pattern (i.e., one key can open multiple locks). For example, a decryption key
generated from a triple pattern (?,p,?) should be able to decrypt all triples
with p in the predicate position.
1 The Setup algorithm remains unchanged.

Self-Enforcing Access Control for Encrypted RDF 611

Fig. 1. Process of encrypting an RDF triple t.

Encrypting RDF Triples (Enc). To be able to efficiently encrypt large RDF
datasets, we adopt a strategy commonly used in public-key infrastructures for
securely and efficiently encrypting large amounts of data called Key Encapsula-
tion [24]. Key encapsulation allows for secure but slow asymmetric encryption
to be combined with simple but fast symmetric encryption by using asymmetric
encryption algorithms for deriving a symmetric encryption key (usually in terms
of a seed) which is subsequently used by encryption algorithms such as AES [11]
for the actual encryption of the data. We illustrate this process in Fig. 1.

Thus, to encrypt an RDF triple t = (s, p, o), we first compute its respective
triple vector (i.e., attribute vector) �yt and functionally encrypt (i.e., compute
Enc as defined in [22]) a randomly generated seed mt using �yt as the associated
attribute vector. Triple vector �yt where �yt = (ys, y

′
s, yp, y

′
p, yo, y

′
o) for triple t is

constructed as follows, where σ denotes a mapping function that maps a triple’s
subject, predicate, and object value to elements in ZN :

yl := −r · σ(l), y′
l := r,with l ∈ {s, p, o} and random r ∈ ZN

Table 1 illustrates the construction of a triple vector �yt based on RDF triple t.

Table 1. Computing the triple vector �yt of an RDF triple t.

Triple t Triple vector �yt

t1 = (s1, p1, o1) �yt1 = (−r1 · σ(s1), r1, −r2 · σ(p1), r2, −r3 · σ(o1), r3)

t2 = (s2, p2, o2) �yt2 = (−r4 · σ(s2), r4, −r5 · σ(p2), r5, −r6 · σ(o2), r6)

.

tn = (sn, pn, on) �ytn = (−r3n−2·σ(sn), r3n−2, −r3n−1·σ(pn), r3n−1, −r3n·σ(on), r3n)

We use AES to encrypt the actual plaintext triple t with an encryption key
derivable from our previously generated seed mt and return both, the resulting
AES ciphertext of t denoted by t̂ and the ciphertext of the seed denoted by m̂t

as final ciphertext triple ct = 〈t̂, m̂t〉.

Generating Decryption Keys (KeyGen). As outlined above, decryption
keys must be able to decrypt all triples that satisfy their inherent triple pattern

612 J.D. Fernández et al.

Table 2. Computing the query vector �xtp that corresponds to a triple pattern tp

Triple pattern tp Query vector �xtp

tp1 = (?, ?, ?) �xtp1 = (0, 0, 0, 0, 0, 0)

tp2 = (s2, ?, ?) �xtp2 = (1, σ(s2), 0, 0, 0, 0)

tp3 = (s3, p3, ?) �xtp3 = (1, σ(s3), 1, σ(p3), 0, 0)

.

tpn = (sn, pn, on) �xtpn = (1, σ(sn), 1, σ(pn), 1, σ(on))

(i.e., one query key can open multiple locks). In order to compute a decryption
key based on a triple pattern tp = (s, p, o) with s, p, and o either bound or
unbound, we define its corresponding vector �x as �xtp = (xs, x

′
s, xp, x

′
p, xo, x

′
o)

with:

if l is bound:xl := 1, x′
l := σ(l), with l ∈ {s, p, o}

if l is not bound:xl := 0, x′
l := 0, with l ∈ {s, p, o}

Again, σ denotes a mapping function that maps a triple pattern’s subject,
predicate, and object value to elements in ZN . Table 2 illustrates the construction
of a query vector �xtp that corresponds to a triple pattern tp.

Decryption of RDF Triples (Dec). To verify whether an encrypted triple
can be decrypted with a given decryption key, we compute the inner-product
of their corresponding triple vector �yt and query vector �xtp, with t = (st, pt, ot)
and tp = (stp, ptp, otp):

�yt · �xtp = yst
xstp

+ y′
st

x′
stp

+ ypt
xptp

+ y′
pt

x′
ptp

+ yot
xotp

+ y′
ot

x′
otp

Only when �yt · �xtp = 0 is it possible to decrypt the encrypted seed m̂t, hence
the corresponding symmetric AES key can be correctly derived and the plaintext
triple t be returned. Otherwise (i.e., �yt · �xtp �= 0), an arbitrary seed m′ �= mt is
generated hence encrypted triple ct cannot be decrypted [26].

4 Optimising Query Execution over Encrypted RDF

The secure data store holds all the encrypted triples, i.e. {ct1 , ct2 , · · · , ctn}, being
n the total number of triples in the dataset. Besides assuring the confidentiality
of the data, the data store is responsible for enabling the querying of encrypted
data.

In the most basic scenario, since triples are stored in their encrypted form, a
user’s query would be resolved by iterating over all triples in the dataset, checking
whether any of them can be decrypted with a given decryption key. Obviously,
this results in an inefficient process at large scale. As a first improvement one can

Self-Enforcing Access Control for Encrypted RDF 613

distribute the set of encrypted triples among different peers such that decryption
could run in parallel. In spite of inherent performance improvements, such a
solution is still dominated by the available number of peers and the – potentially
large – number of encrypted triples each peer would have to process. Current
efficient solutions for querying encrypted data are based on (a) using indexes
to speed up the decryption process by reducing the set of potential solutions;
or (b) making use of specific encryption schemes that support the execution of
operations directly over encrypted data [13]. Our solution herein follows the first
approach, whereas the use of alternative and directly encryption mechanisms
(such as homomorphic encryption [28]) is complementary and left to future work.

In our implementation of such a secure data store, we first encrypt all triples
and store them in a key-value structure, referred to as an EncTriples Index,
where the keys are unique integer IDs and the values hold the encrypted triples
(see Figs. 2 and 3 (right)). Note that this structure can be implemented with
any traditional Map structure, as it only requires fast access to the encrypted
value associated with a given ID. In the following, we describe two alternative
approaches, i.e., one using three individual indexes and one based on Vertical
Partitioning (VP) for finding the range of IDs in the EncTriples Index which
can satisfy a triple pattern query. In order to maintain simplicity and general
applicability of the proposed store, both alternatives consider key-value back-
ends, which are increasingly used to manage RDF data [8], especially in distrib-
uted scenarios. It is also worth mentioning that we focus on basic triple pattern
queries as (i) they are the cornerstone that can be used to build more complex
SPARQL queries, and (ii) they constitute all the functionality to support the
Triple Pattern Fragments [31] interface.

Fig. 2. 3-Index approach for indexing and retrieval of encrypted triples.

614 J.D. Fernández et al.

3-Index Approach. Following well-known indexing strategies, such as from
CumulusRDF [25], we use three key-value B-Trees in order to cover all triple
pattern combinations: SPO, POS and OSP Indexes. Figure 2 illustrates this organi-
sation. As can be seen, each index consists of a Map whose keys are the securely
hashed (cf. PBKDF2 [19]) subject, predicate, and object of each triple, and
values point to IDs storing the respective ciphertext triples in the EncTriples

Index.
Algorithm 1 shows the resolution of a (s,p,o) triple pattern query using

the 3-Index approach. First, we compute the secure hashes h(s), h(p) and
h(o) from the corresponding s, p and o provided by the user (Line 1). Our
hash(s, p, o) function does not hash unbounded terms in the triple pattern but
treats them as a wildcard ‘?’ term (hence all terms will be retrieved in the
subsequent range queries). Then, we select the best index to evaluate the query
(Line 2). In our case, the SPO Index serves (s,?,?) and (s,p,?) triple patterns,
the POS Index satisfies (?,p,?) and (?,p,o), and the OSP Index index serves
(s,?,o) and (?,?,o). Both (s,p,o) and (?,?,?) can be solved by any of
them. Then, we make use of the selected index to get the range of values where
the given h(s), h(p), h(o) (or ‘anything’ if the wildcard ‘?’ is present in a
term) is stored (Line 3). Note that this search can be implemented by utilising
B-Trees [10,29] for indexing the keys. For each of the candidate ID values in the
range (Line 4), we retrieve the encrypted triple for such ID by searching for this
ID in the EncTriples Index (Line 5). Finally, we proceed with the decryption of
the encrypted triple using the key provided by the user (Line 6). If the status
of such decryption is valid (Line 7) then the decryption was successful and we
output the decrypted triples (Line 8) that satisfy the query.

Algorithm 1. 3-Index Search(s,p,o,key)

1: (h(s), h(p), h(o)) ← hash(s, p, o);
2: index ← selectBestIndex(s, p, o); � index = {SPO|POS|OSP}
3: IDs[] ← index.getRangeV alues(h(s), h(p), h(o));
4: for each (id ∈ IDs) do
5: encryptedTriple ← EncTriples.get(id);
6: < decryptedTriple, status >← Decrypt(encryptedTriple, key);
7: if (status = valid) then
8: output(decryptedTriple);
9: end if

10: end for

Thus, the combination of the three SPO, POS and OSP Indexes reduces the
search space of the query requests by applying simple range scans over hashed
triples. This efficient retrieval has been traditionally served through tree-based
map structures guaranteeing log(n) costs for searches and updates on the data,
hence we rely on B-Tree stores for our practical materialisation of the indexes.
In contrast, supporting all triple pattern combinations in 3-Index comes at the

Self-Enforcing Access Control for Encrypted RDF 615

expense of additional space overheads, given that each (h(s),h(p),h(o)) of a
triple is stored three times (in each SPO, POS and OSP Indexes). Note, however,
that this is a typical scenario for RDF stores and in our case the triples are
encrypted and stored just once (in EncTriples Index).

Vertical Partitioning Approach. Vertical partitioning [1] is a well-known
RDF indexing technique motivated by the fact that usually only a few predicates
are used to describe a dataset [14]. Thus, this technique stores one “table” per
predicate, indexing (S,O) pairs that are related via the predicate. In our case, we
propose to use one key-value B-Tree for each h(p), storing (h(s),h(o)) pairs as
keys, and the corresponding ID as the value. Similar to the previous case, the only
requirement is to allow for fast range queries on their map index keys. However, in
the case of an SO index, traditional key-value schemes are not efficient for queries
where the first component (the subject) is unbound. Thus, to improve efficiency
for triple patterns with unbounded subject (i.e. (?,py,oz) and (?,?,oz)), while
remaining in a general key-value scheme, we duplicate the pairs and introduce
the inverse (h(o),h(s)) pairs. The final organisation is shown in Fig. 3 (left),
where the predicate maps are referred to as Pred h(p1), Pred h(p2),..., Pred h(pn)
Indexes. As depicted, we add "so" and "os" keywords to the stored composite
keys in order to distinguish the order of the key.

Algorithm 2 shows the resolution of a (s,p,o) triple pattern query with
the VP organisation. In this case, after performing the variable initialisation
(Line 1) and the aforementioned secure hash of the terms (Line 2), we inspect
the predicate term h(p) and select the corresponding predicate index (Line 3),
i.e., Pred h(p). Nonetheless, if the predicate is unbounded, all predicate indexes
are selected as we have to iterate through all tables, which penalises the perfor-
mance of such queries. For each predicate index, we then inspect the subject
term (Lines 5–9). If the subject is unbounded (Line 5), we will perform a
("os",h(o),?) range query over the corresponding predicate index (Line 6),

Fig. 3. Vertical Partitioning (VP) approach for indexing and retrieval of encrypted
triples.

616 J.D. Fernández et al.

Algorithm 2. VerticalPartitioning Search(s,p,o,key)

1: IDs[] ← ();
2: (h(s), h(p), h(o)) ← hash(s, p, o);
3: Indexes[] ← selectPredIndex(h(p)); � Indexes ⊆ {Pred h(p1), · · · , P red h(pn)Index}
4: for each (index ∈ Indexes) do

5: if (s =?) then

6: IDs[] ← index.getRangeV alues(”os”, h(o), ?);
7: else

8: IDs[] ← index.getRangeV alues(”so”, h(s), h(o));
9: end if

10: for each (id ∈ IDs) do

11: encryptedTriple ← EncTriples.get(id);
12: < decryptedTriple, status >← Decrypt(encryptedTriple, key);
13: if (status = valid) then
14: output(decryptedTriple);

15: end if

16: end for

17: end for

otherwise we execute a ("so",h(s),h(o)) range query. Note that in both cases
the object could also be unbounded. The algorithm iterates over the candidates
IDs (Lines 10-end) in a similar way to the previous cases, i.e., retrieving the
encrypted triple from EncTriples Index (Line 11) and performing the decryp-
tion (Lines 12–14).

Overall, VP needs less space than the previous 3-Index approach, since the
predicates are represented implicitly and the subjects and objects are represented
only twice. In contrast, it penalises the queries with unbound predicate as it has
to iterate through all tables. Nevertheless, studies on SPARQL query logs show
that these queries are infrequent in real applications [3].

Protecting the Structure of Encrypted Data. The proposed hash-based
indexes are a cornerstone for boosting query resolution performance by reducing
the encrypted candidate triples that may satisfy the user queries. The use of
secure hashes [19] assures that the terms cannot be revealed but, in contrast,
the indexes themselves reproduce the structure of the underlying graph (i.e., the
in/out degree of nodes). However, the structure should also be protected as hash-
based indexes can represent a security risk if the data server is compromised.
State-of-the-art solutions (cf., [13]) propose the inclusion of spurious information,
that the query processor must filter out in order to obtain the final query result.

In our particular case, this technique can be adopted by adding dummy triple
hashes into the indexes with a corresponding ciphertext (in EncTriples Index)
that cannot be decrypted by any key, hence will not influence the query results.
Such an approach ensures that both the triple hashes and their corresponding
ciphertexts are not distinguishable from real data.

Self-Enforcing Access Control for Encrypted RDF 617

5 Evaluation

We develop a prototypical implementation2 of the proposed encryption and
indexing strategies. Our tool is written in Java and it relies on the Java
Pairing-Based Cryptography Library (JPBC [12]) to perform all the encryp-
tion/decryption operations. While, we use MapDB3 as the supporting framework
for the indexes. We provide an interface that takes as input a triple pattern query
and a query key, and outputs the results of the query.

We evaluate our proposal in two related tasks: (i) performance of the data
loading (encryption and indexing) and (ii) performance of different user queries
(query execution on encrypted data). In both cases, we compare our proposed
3-Index strategy w.r.t the vertical partitioning (VP) approach. Finally, we mea-
sure the performance overhead associated with query resolution, introduced by
the secure infrastructure, by comparing its results with a counterpart non-secure
triplestore. For a fair comparison, we implement the non-secure triplestore with
similar 3-Index and VP indexing strategies, storing the RDF data in plain. The
approaches are referred to as 3-Index-plain and VP-plain respectively.

Table 3. Statistical dataset description.

Dataset Triples |S| |P| |O| Size (MB)

Census 361,842 51,768 26 6,901 52

Jamendo 1,049,637 335,925 26 440,602 144

AEMET 3,547,154 394,289 23 793,664 726

100,000 22,932 18 11,588 15

200,000 39,244 18 23,749 29

500,000 87,984 18 60,028 71

LUBM 1,000,000 169,783 18 120,464 139

2,000,000 333,105 18 241,342 277

5,000,000 820,185 18 604,308 694

Table 3 describes our experimental datasets, reporting the number of triples,
different subjects (|S|), predicates (|P|) and objects (|O|), as well as the file size
(in NT format). Note that there is no standard RDF corpus that can be used to
evaluate RDF encryption approaches, hence we choose a diverse set of datasets
that have been previously used to benchmark traditional RDF stores or there is a
use case that indicates they could potentially benefit from a secure data store. On
the one hand, we use the well-known Lehigh University Benchmark (LUBM [18])
data generator to obtain synthetic datasets of incremental sizes from 100K triples

2 Source code and experimental datasets are available at: https://aic.ai.wu.ac.at/
comcrypt/sld/.

3 http://www.mapdb.org/.

https://aic.ai.wu.ac.at/comcrypt/sld/
https://aic.ai.wu.ac.at/comcrypt/sld/
http://www.mapdb.org/

618 J.D. Fernández et al.

Fig. 4. Time for loading (encrypting+indexing) the entire dataset for 3-Index and
VP. We only report indexing time for the non-secure counterparts 3-Index-plain and
VP-plain.

to 5M triples. On the other hand, we choose real-world datasets from different
domains: Census represents the 2010 Australian census, where sensitive data
must be preserved and users could have different partial views on the dataset;
Jamendo lists music records and artists, where some data can be restricted to
certain subscribers; and AEMET includes sensor data from weather stations in
Spain, which is a real use case where the old data is public but the most recent
data is restricted to particular users. Tests were performed on a computer with 2
x Intel Xeon E5-2650v2 @ 2.6 GHz (16 cores), RAM 171 GB, 4 HDDs in RAID
5 config. (2.7 TB netto storage), Ubuntu 14.04.5 LTS running on a VM with
QEMU/KVM hypervisor. All of the reported (elapsed) times are the average of
three independent executions.

Data Loading. Figure 4 shows the dataset load times4 for the 3-Index and
VP strategies. The reported time consists of the time to encrypt the triples
using the aforementioned FE scheme, and the time to securely hash the terms
and create the different indexes. In contrast, the non-secure triplestores, i.e.
the 3-Index-plain and VP-plain counterparts, only require the dataset to be
indexed (we also make use of the hash of the terms in order to compare the
encryption overhead).

The results show that the time of both the 3-Index and the VP strategy
scales linearly with the number of triples, which indicates that the representa-
tion can scale in the envisioned Linked Data scenario. It is worth noting that
both strategies report similar performance results, where VP is slightly faster
for loading given that only the subject and object is used to index each triple
(the predicate is implicitly given by vertical partitioning). Finally, note that the

4 We first list the LUBM datasets in increasingly order of triples, and use name abbre-
viations for LUBM (L), Census (C), Jamendo (J), and AEMET (A).

Self-Enforcing Access Control for Encrypted RDF 619

Fig. 5. Cold query times of LUBM with 5M triples (LHS) and Jamendo (RHS) for
3-Index, VP, and their non-secure counterparts in ms (logarithmic y-axis).

comparison w.r.t the plain counterparts shows that the encryption overhead can
be of one order of magnitude for the smaller datasets. In contrast, the encryption
overhead is greatly reduced for larger datasets which is primarily due to the fact
that the loading time for large datasets is the predominant factor, as the B-Tree
indexes become slower the more triples are added (due to rebalancing).

Query Resolution. Figure 5 shows the query resolution time for two selected
datasets5, LUBM with 5M triples and Jamendo, considering all types of triple
patterns. To do so, we sample 1,000 queries of each type and report the average
resolution time. As expected, the 3-Index reports a noticeable better perfor-
mance than VP for queries with unbound predicates given that VP has to iter-
ate though all predicate tables in this case. In turn, the 3-Index and the VP
approaches remain competitive with respect to their non-secure counterparts,
if a look-up returns only a small amount of results as it is usually the case for
(s,?,?), (s,?,o), (s,p,o) queries. However, the more query results that need
to be returned the longer the decryption takes. At this point we also want to
stress that due to the nature of our approach, each result triple can be returned
as soon as its decryption has finished. This is in line with the incremental nature
of the Triple Pattern Fragment [31] approach, which paginates the query results
(typically including 100 results per page), allowing users to ask for further pages
if required. For example, decrypting Jamendo entirely took about 2256 s for
VP and 2808 s for 3-Index, leading to respective triple decryption rates of 465
triples/s and 374 triples/s in a cold scenario, which already fulfils the perfor-
mance requirements to feed several Triple Pattern Fragments per second.

Scalability. As mentioned in Sect. 4, our approach allows for parallel encryp-
tion/decryption of triples, thus scales with the system’s supported level of

5 Results are comparable for all datasets.

620 J.D. Fernández et al.

parallelisation/number of available cores (e.g., encrypting and indexing
(3-Index) 10000 LUBM triples takes about 76 s with 16 available cores, 133s
with 8, 262s with 4, and 497 s with 2 available cores).

Our experiments have shown that (i) the performance of our indexing strat-
egy is not affected by the encryption, hence, is as effective on encrypted data as
it is on non-encrypted data, and (ii) the decryption of individual triples is a fast
process which can be utilised in our Linked Data scenario, especially under the
umbrella of the Linked Data Fragments framework.

6 Conclusion

To date Linked Data publishers have mainly focused on exposing and linking
open data, however there is also a need to securely store, exchange, and query also
sensitive data alongside (i.e., closed data). Both access control and encryption
mechanisms are needed to protect such data from unauthorised access, secu-
rity breaches, and potentially untrusted service providers. Herein, we presented
a mechanism to provide secure and fine-grained encryption of RDF datasets.
First, we proposed a practical realisation of a functional encryption scheme,
which allows data providers to generate query keys based on (triple-)patterns,
whereby one decryption key can decrypt all triples that match its associated
triple pattern. As such, our approach operates on a very fine level of granularity
(i.e., triple level), which provides a high degree of flexibility and enables con-
trolled access to encrypted RDF data. In existing literature, enforcing access
control at the level of single statements or tuples is generally referred to as
fine-grained access control (cf. [23]). Then, we presented two indexing strategies
(implemented using MapDB) to enhance query performance, the main scalability
bottleneck when it comes to serving user requests.

Our empirical evaluation shows that both indexing strategies on encrypted
RDF data report reasonable loading and query performance overheads with
respect to traditional, non-encrypted data retrieval. Our results also indicate
that the approach is relatively slow for batch decryption, but this can be coun-
teracted by the fact that it is suitable for serving incremental results, hence it is
particularly suitable for Linked Data Fragments.

In future work, we plan to inspect different indexing strategies in order to
optimise the loading time and query performance of large queries. We also con-
sider extending our proposal to cater for named graphs, that is, encrypting
quads instead of triples and generating keys based on quad patterns. Finally,
we aim to integrate the proposed secure RDF store with a “policy” tier by
employing Attribute-based Access Control (ABAC), which will manage the
access/revocation to the query keys and serve as fully fledged security framework
for Linked Data.

Self-Enforcing Access Control for Encrypted RDF 621

References

1. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic web
data management using vertical partitioning. In: Proceedings of Very Large Data
Bases, pp. 411–422 (2007)

2. Abdalla, M., Bourse, F., Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp.
733–751. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 33

3. Arias, M., Fernández, J.D., Mart́ınez-Prieto, M.A., de la Fuente, P.: An empirical
study of real-world SPARQL queries. arXiv preprint arXiv:1103.5043 (2011)

4. Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.-C., Steiner,
M.: Dynamic searchable encryption in very-large databases: data structures and
implementation. IACR Cryptology ePrint Archive, 2014:853 (2014)

5. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 20

6. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on
remote encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS
2005. LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). doi:10.1007/
11496137 30

7. Chase, M., Shen, E.: Pattern matching encryption. IACR Cryptology ePrint
Archive, 2014:638 (2014)

8. Cudré-Mauroux, P., et al.: NoSQL databases for RDF: an empirical evaluation.
In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 310–325. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-41338-4 20

9. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: Proceedings of Computer
and Communications Security, pp. 79–88 (2006)

10. da Rocha Pinto, P., Dinsdale-Young, T., Dodds, M., Gardner, P., Wheelhouse,
M.J.: A simple abstraction for complex concurrent indexes. In: Proceedings of
Object-Oriented Programming, Systems, Languages, and Applications, pp. 845–
864 (2011)

11. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002)

12. De Caro, A., Iovino, V.: JPBC: Java pairing based cryptography. In: Proceedings
of IEEE Symposium on Computers and Communications, pp. 850–855 (2011)

13. De Capitani di Vimercati, S., Foresti, S., Livraga, G., Samarati, P.: Practical tech-
niques building on encryption for protecting and managing data in the cloud.
In: Ryan, P.Y.A., Naccache, D., Quisquater, J.-J. (eds.) The New Codebreakers -
Essays Dedicated to David Kahn on the Occasion of His 85th Birthday. LNCS, vol.
9100, pp. 205–239. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49301-4 15

14. Fernández, J.D., Mart́ınez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.:
Binary RDF representation for publication and exchange (HDT). J. Web Seman.
19, 22–41 (2013)

15. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: Proceed-
ings of ACM Symposium on Theory of Computing, vol. 9, pp. 169–178 (2009)

16. Gerbracht, S.: Possibilities to encrypt an RDF-Graph. In: Proceedings of Infor-
mation and Communication Technologies: From Theory to Applications, pp. 1–6
(2008)

http://dx.doi.org/10.1007/978-3-662-46447-2_33
http://arxiv.org/abs/1103.5043
http://dx.doi.org/10.1007/978-3-642-40041-4_20
http://dx.doi.org/10.1007/11496137_30
http://dx.doi.org/10.1007/11496137_30
http://dx.doi.org/10.1007/978-3-642-41338-4_20
http://dx.doi.org/10.1007/978-3-662-49301-4_15

622 J.D. Fernández et al.

17. Giereth, M.: On partial encryption of RDF-Graphs. In: Gil, Y., Motta, E., Ben-
jamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 308–322.
Springer, Heidelberg (2005). doi:10.1007/11574620 24

18. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
J. Web Seman. 3(2), 158–182 (2005)

19. Kaliski, B.: PKCS #5: Password-Based Cryptography Specification Version 2.0.
RFC 2898 (Informational), September 2000

20. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39884-1 22

21. Kasten, A., Scherp, A., Armknecht, F., Krause, M.: Towards search on encrypted
graph data. In: Proceedings of the International Conference on Society, Privacy
and the Semantic Web-Policy and Technology, pp. 46–57 (2013)

22. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. J. Cryptology 26(2), 191–224 (2013)

23. Kirrane, S., Mileo, A., Decker, S.: Access control and the resource description
framework: a survey. Seman. Web 8(2), 311–352 (2017). doi:10.3233/SW-160236.
http://dx.doi.org/10.3233/SW-160236

24. Kurosawa, K., Phong, L.T.: Kurosawa-desmedt key encapsulation mechanism,
revisited. IACR Cryptology ePrint Archive, 2013:765 (2013)

25. Ladwig, G., Harth, A.: CumulusRDF: linked data management on nested key-value
stores. In: Proceedings of Scalable Semantic Web Knowledge Base Systems, p. 30
(2011)

26. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 4

27. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

28. Popa, R., Zeldovich, N., Balakrishnan, H.: Cryptdb: a practical encrypted rela-
tional dbms. Technical report, MIT-CSAIL-TR–005 (2011)

29. Sagiv, Y.: Concurrent operations on B*-trees with overtaking. J. Comput. Syst.
Sci. 33(2), 275–296 (1986)

30. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: Proceedings of Network and Distributed System Security,
vol. 14, pp. 23–26 (2014)

31. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L., De
Meester, B., Haesendonck, G., Colpaert, P.: Triple pattern fragments: a low-cost
knowledge graph interface for the Web. J. Web Seman. 37–38, 184–206 (2016)

32. Zheleva, E., Getoor, L.: To join or not to join: the illusion of privacy in social
networks with mixed public and private user profiles. In: Proceedings of World
Wide Web, pp. 531–540 (2009)

http://dx.doi.org/10.1007/11574620_24
http://dx.doi.org/10.1007/978-3-642-39884-1_22
http://dx.doi.org/10.3233/SW-160236
http://dx.doi.org/10.3233/SW-160236
http://dx.doi.org/10.1007/978-3-642-13190-5_4
http://dx.doi.org/10.1007/3-540-48910-X_16

	Self-Enforcing Access Control for Encrypted RDF
	1 Introduction
	2 Related Work
	3 Secure and Fine-Grained Encryption of RDF
	3.1 A Functional Encryption Scheme for RDF

	4 Optimising Query Execution over Encrypted RDF
	5 Evaluation
	6 Conclusion
	References

