8 research outputs found

    Evidence for an excitatory GABAA response in human motor cortex in idiopathic generalised epilepsy

    Get PDF
    Purpose Impaired GABAergic inhibition has been implicated in the pathophysiology of epilepsy. The possibility of a paradoxical excitatory effect of GABA in epilepsy has been suggested, but has not been investigated in vivo. We investigated pre- and post-synaptic GABAergic mechanisms in patients with idiopathic generalised epilepsy (IGE). Method In 10 patients and 12 control subjects we explored short- and long-interval intracortical inhibition (SICI, LICI; post-synaptic GABAA and GABAB-mediated respectively) and long-interval intracortical facilitation (LICF; pre-synaptic disinhibition) using transcranial magnetic stimulation. Results While post-synaptic GABAB-mediated inhibition was unchanged in IGE (p = 0.09), LICF was reduced compared to controls (controls: 141 ± 17% of baseline; untreated patients: 107 ± 12%, p = 0.2; treated patients: 79 ± 10%, p = 0.003). GABAA-mediated inhibition was reduced in untreated patients (response amplitude 56 ± 4% of baseline vs. 26 ± 6% in controls, p = 0.004) and normalised with treatment (37 ± 12%, p = 0.5 vs. controls). When measured during LICI, GABAA-mediated inhibition became excitatory in untreated IGE (response amplitude 120 ± 10% of baseline, p = 0.017), but not in treated patients. Conclusion Pre- and post-synaptic GABA-mediated inhibitory mechanisms are altered in IGE. The findings lend in vivo support to evidence from experimental models and in vitro studies of human epileptic brain tissue that GABA may have a paradoxical excitatory role in ictogenesis

    Personalized brain stimulation of memory networks

    Get PDF
    Available online 13 September 2022Background: The finding that transcranial magnetic stimulation (TMS) can enhance memory performance via stimulation of parietal sites within the Cortical-Hippocampal Network counts as one of the most exciting findings in this field in the past decade. However, the first independent effort aiming to fully replicate this finding found no discernible influence of TMS on memory performance. Objective: We examined whether this might relate to interindividual spatial variation in brain connectivity architecture, and the capacity of personalisation methodologies to overcome the noise inherent across independent scanners and cohorts. Methods: We implemented recently detailed personalisation methodology to retrospectively compute individual-specific parietal targets and then examined relation to TMS outcomes. Results: Closer proximity between actual and novel fMRI-personalized targets associated with greater improvement in memory performance. Conclusion: These findings demonstrate the potential importance of aligning brain stimulation targets according to individual-specific differences in brain connectivity, and extend upon recent findings in prefrontal cortex.Robin F.H. Cash, Joshua Hendrikse, Kavisha B Fernando, Sarah Thompson, Chao Suo, Alex Fornito, Murat Yücel, Nigel C. Rogasch, Andrew Zalesky, James P. Coxo

    Evidence for high-fidelity timing-dependent synaptic plasticity of human motor cortex

    No full text
    A single transcranial magnetic stimulation (TMS) pulse typically evokes a short series of spikes in corticospinal neurons [known as indirect (I)-waves] which are thought to arise from transynaptic input. Delivering a second pulse at inter-pulse intervals (IPIs) corresponding to the timing of these I-waves leads to a facilitation of the response, and if stimulus pairs are delivered repeatedly, a persistent LTP-like increase in excitability can occur. This has been demonstrated at an IPI of 1.5 ms, which corresponds to the first I-wave interval, in an intervention referred to as ITMS (I-wave TMS), and it has been argued that this may have similarities with timing-dependent plasticity models. Consequently, we hypothesized that if the second stimulus is delivered so as not to coincide with I-wave timing, it should lead to LTD. We performed a crossover study in 10 subjects in which TMS doublets were timed to coincide (1.5-ms IPI, ITMS1.5) or not coincide (2-ms IPI, ITMS2) with I-wave firing. Single pulse motor-evoked potential (MEP) amplitude, resting motor threshold (RMT), and short-interval cortical inhibition (SICI) were measured from the first dorsal interosseous (FDI) muscle. After ITMS1.5 corticomotor excitability was increased by ∼60% for 15 min (P < 0.05) and returned to baseline by 20 min. Increasing the IPI by just 500 μs to 2 ms reversed the aftereffect, and MEP amplitude was significantly reduced (∼35%, P < 0.05) for 15 min before returning to baseline. This reduction was not associated with an increase in SICI, suggesting a reduction in excitatory transmission rather than an increase in inhibitory efficacy. RMT also remained unchanged, suggesting that these changes were not due to changes in membrane excitability. Amplitude-matching ITMS2 did not modulate excitability. The results are consistent with timing-dependent synaptic LTP/D-like effects and suggest that there are plasticity mechanisms operating in the human motor cortex with a temporal resolution of the order of a few hundreds of microseconds

    Neuromodulation by paired-pulse TMS at an I-wave interval facilitates multiple I-waves

    No full text
    Corticospinal excitability can be increased by a transcranial magnetic stimulation (TMS) intervention that delivers repeated paired TMS pulses at an I (indirect)-wave interval of 1.5 ms. This is thought to target excitatory synaptic events by reinforcing facilitatory I-wave interaction, however, it remains to be determined what effect this intervention has on the various I-wave components. In the present study we compared I-wave facilitation curves over a range of inter-pulse intervals (IPIs) encompassing the first three I-waves, before and after 15 min of a paired-pulse TMS intervention with an IPI of 1.5 ms. The three peaks in the I-wave facilitation curves occurred at the same IPIs pre- and post-intervention (1.3, 2.5 and 4.3 ms). The facilitation curves were increased in amplitude for all three I-wave peaks post-intervention (mean increase 33%), and the mean increase across all IPIs correlated with the post-intervention increase in single-pulse MEP amplitude (r = 0.77). Modelling showed that the changes in the post-intervention curves were consistent with an increase in amplitude and broadening of the individual I-wave peaks. We conclude that an iTMS intervention with an IPI of 1.5 ms is able to target multiple I-waves. The findings are consistent with existing models of I-wave generation and suggest that the intervention increases the efficacy of synaptic events associated with the generation of descending I-wave volleys

    The effects of individualised intermittent theta burst stimulation in the prefrontal cortex: a TMS-EEG study

    No full text
    Recent studies have highlighted variability in response to theta burst stimulation (TBS) in humans. TBS paradigm was originally developed in rodents to mimic gamma bursts coupled with theta rhythms, and was shown to elicit long-term potentiation. The protocol was subsequently adapted for humans using standardised frequencies of stimulation. However, each individual has different rhythmic firing pattern. The present study sought to explore whether individualised intermittent TBS (Ind iTBS) could outperform the effects of two other iTBS variants. Twenty healthy volunteers received iTBS over left prefrontal cortex using 30 Hz at 6 Hz, 50 Hz at 5 Hz, or individualised frequency in separate sessions. Ind iTBS was determined using theta-gamma coupling during the 3-back task. Concurrent use of transcranial magnetic stimulation and electroencephalography (TMS-EEG) was used to track changes in cortical plasticity. We also utilised mood ratings using a visual analogue scale and assessed working memory via the 3-back task before and after stimulation. No group-level effect was observed following either 30 or 50 Hz iTBS in TMS-EEG. Ind iTBS significantly increased the amplitude of the TMS-evoked P60, and decreased N100 and P200 amplitudes. A significant positive correlation between neurophysiological change and change in mood rating was also observed. Improved accuracy in the 3-back task was observed following both 50 Hz and Ind iTBS conditions. These findings highlight the critical importance of frequency in the parameter space of iTBS. Tailored stimulation parameters appear more efficacious than standard paradigms in neurophysiological and mood changes. This novel approach presents a promising option and benefits may extend to clinical applications.Sung Wook Chung, Caley M. Sullivan, Nigel C. Rogasch, Kate E. Hoy, Neil W. Bailey, Robin F.H. Cash, Paul B. Fitzgeral

    GABA concentration in sensorimotor cortex following high-intensity exercise and relationship to lactate levels

    Get PDF
    First published online 21 November 2017KEY POINTS:Magnetic resonance spectroscopy was conducted before and after high-intensity interval exercise. Sensorimotor cortex GABA concentration increased by 20%. The increase was positively correlated with the increase in blood lactate. There was no change in dorsolateral prefrontal cortex. There were no changes in the glutamate-glutamine-glutathione peak. ABSTRACT: High-intensity exercise increases the concentration of circulating lactate. Cortical uptake of blood borne lactate increases during and after exercise; however, the potential relationship with changes in the concentration of neurometabolites remains unclear. Although changes in neurometabolite concentration have previously been demonstrated in primary visual cortex after exercise, it remains unknown whether these changes extend to regions such as the sensorimotor cortex (SM) or executive regions such as the dorsolateral prefrontal cortex (DLPFC). In the present study, we explored the acute after-effects of high-intensity interval training (HIIT) on the concentration of gamma-Aminobutyric acid (GABA) and the combined glutamate-glutamine-glutathione (Glx) spectral peak in the SM and DLPFC, as well as the relationship with blood lactate levels. Following HIIT, there was a robust increase in GABA concentration in the SM, as evident across the majority of participants. This change was not observed in the DLPFC. Furthermore, the increase in SM GABA was positively correlated with an increase in blood lactate. There were no changes in Glx concentration in either region. The observed increase in SM GABA concentration implies functional relevance, whereas the correlation with lactate levels may relate to the metabolic fate of exercise-derived lactate that crosses the blood-brain barrier.James P. Coxon, Robin F.H. Cash, Joshua J. Hendrikse, Nigel C. Rogasch, Ellen Stavrinos, Chao Suo and Murat Yüce
    corecore