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Highlights:27

1. TMS was used to explore GABA-mediated inhibition in IGE28

2. Post-synaptic GABAB inhibition (LICI) was normal, but pre-synaptic LICF reduced29

3. GABAA inhibition (SICI) was reduced in untreated but not treated IGE30

4. When tested during GABAB inhibition, the SICI protocol was excitatory31

5. During ongoing GABAB inhibition, GABAA activation may be excitatory32
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Abstract33

Purpose: Impaired GABAergic inhibition has been implicated in the pathophysiology of 34

epilepsy. The possibility of a paradoxical excitatory effect of GABA in epilepsy has been 35

suggested, but has not been investigated in vivo. We investigated pre- and post-synaptic 36

GABAergic mechanisms in patients with idiopathic generalised epilepsy (IGE).37

Methods: In 10 patients and 12 control subjects we explored short- and long-interval 38

intracortical inhibition (SICI, LICI; post-synaptic GABAA and GABAB-mediated 39

respectively) and long-interval intracortical facilitation (LICF; pre-synaptic disinhibition) 40

using transcranial magnetic stimulation. 41

Results: While post-synaptic GABAB-mediated inhibition was unchanged in IGE (p=0.09), 42

LICF was reduced compared to controls (controls: 141±17% of baseline; untreated patients: 43

107±12%, p=0.2; treated patients: 79±10%, p=0.003). GABAA-mediated inhibition was 44

reduced in untreated patients (response amplitude 56±4% of baseline vs. 26±6% in controls, 45

p=0.004) and normalised with treatment (37±12%, p=0.5 vs. controls). When measured 46

during LICI, GABAA-mediated inhibition became excitatory in untreated IGE (response 47

amplitude 120±10% of baseline, p=0.017), but not in treated patients.48

Conclusions: Pre- and post-synaptic GABA-mediated inhibitory mechanisms are altered in 49

IGE. The findings lend in vivo support to evidence from experimental models and in vitro50

studies of human epileptic brain tissue that GABA may have a paradoxical excitatory role in 51

ictogenesis.52

Keywords: transcranial magnetic stimulation, epilepsy, cortical excitability, GABA, 53

disinhibition54
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Abbreviations:55

AED: anti-epileptic drug56

AEDNO: IGE not on AEDs (subject group)57

AEDON: IGE on AEDs (subject group)58

CS: conditioning stimulus59

EEG: electroencephalography60

EMG: electromyography61

FDI: first dorsal interosseous (muscle)62

GABAR: GABA receptor63

GABAAR: GABAA receptor64

GABABR: GABAB receptor65

I1mV: intensity needed to evoke a MEP of 1mV amplitude66

IGE: idiopathic generalised epilepsy67

ISI: inter-stimulus interval68

IPSP: inhibitory post-synaptic potential69

JME: juvenile myoclonic epilepsy70

KCC2: K+/Cl- cotransporter 271

LCD: late cortical disinhibition72

LICF: long-interval intracortical facilitation 73

LICI: long-interval intracortical inhibition74

MEP: motor evoked potential75

NKCC1: Na+/K+/2Cl- cotransporter 176

PS: priming stimulus77

RMT: resting motor threshold78

SICI: short-interval intracortical inhibition79



Page 4 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

4

TLE: temporal lobe epilepsy80

TMS: transcranial magnetic stimulation81

TS: test stimulus82

TS*: adjusted test stimulus83

84
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Introduction84

Epilepsy is characterised by neuronal hyperexcitability and hypersynchronicity which 85

manifests as recurrent seizures [1-2]. The pathophysiological processes underlying epilepsy 86

in its various forms remain incompletely understood (for reviews, see Engelborghs et al. [1]87

and McCormick and Contreras [2]) but an imbalance between excitatory and inhibitory 88

neuronal inputs is usually implicated. Critical to understanding the pathophysiology of 89

epileptogenesis and ictogenesis are abnormalities in synaptic transmission, and in particular 90

in the activity of GABAergic synaptic networks [2-5]. An improved understanding of in vivo91

synaptic function in epilepsy may inform diagnosis and clinical management.92

93

Within the central nervous system, GABAergic activity can regulate neuronal firing, 94

synchronicity and network oscillations [6]. At a cellular level, activation of post-synaptic 95

GABA receptors results in rapid transient (GABAAR-mediated) and longer-lasting 96

(GABABR-mediated) inhibitory post-synaptic potentials that can modulate or gate firing of 97

the post-synaptic neuron [7-9]. Pre-synaptic GABABRs remain active for longer than post-98

synaptic GABABRs, and regulate (reduce) further GABA release by inhibiting Ca2+ influx,99

resulting in disinhibition [8, 10-11].100

101

In human motor cortex, the activation of GABARs can be measured with TMS using paired-102

pulse stimulation. SICI occurs when a sub-threshold conditioning pulse is delivered ~2-6ms 103

before a supra-threshold test pulse; the conditioning pulse elicits a GABAAR-mediated IPSP 104

and thereby reduces the amplitude of the MEP to the test pulse [12-13] . The ratio of the 105

amplitude of the conditioned MEP to the MEP for the test pulse alone can be used as an index 106

of GABAAR activation. A supra-threshold conditioning pulse results in activation of post-107

synaptic GABABRs, reducing test MEP amplitudes for conditioned-test ISIs of up to ~150ms 108
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(LICI) [14-16]. Pre-synaptic GABABRs activated by the conditioning pulse limit further 109

GABA release, and as they remain active for longer than post-synaptic GABABRs a period 110

arises beyond LICI when disinhibition dominates (LCD), and during which MEP amplitude 111

is increased (LICF) and SICI reduced [17-19].112

113

As pre- and post-synaptic GABARs can exert widespread influence over neuronal firing, 114

their dysfunction has been implicated in the processes of epileptogenesis and ictogenesis [2, 115

4-5, 20]. Previous TMS studies in patients with untreated IGE have reported reduced levels of 116

SICI compared to non-epileptic control subjects [21-25], suggesting a state of cortical 117

hyperexcitability with altered (decreased) cortical GABAA activity. Normal levels of SICI 118

have been consistently reported in patients with IGE who are well controlled on AED therapy 119

[21-25], apart from those with JME in whom SICI may [23, 26] or may not [27-28] return to 120

normal levels. The effect of IGE on LICI is not certain. Although not yet explored in human 121

IGE in vivo, impaired GABABR-mediated auto-inhibition has been demonstrated in in vitro122

studies of human brain tissue obtained from patients undergoing surgery for pharmaco-123

resistant temporal lobe epilepsy [10, 29]. While GABA mediates cortical inhibition and 124

disinhibition in adults, it is known to have excitatory effects early in development [30]. An 125

excitatory role for GABA in epilepsy has also been suggested on the basis of findings in 126

animal models and surgically resected human brain tissue [31-33].127

128

In the present study we used TMS to compare the strengths of short- and long-interval 129

intracortical inhibition and disinhibition in the motor cortex in patients with treated and 130

untreated IGE and in controls.131

132

Methods133
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Subjects134

Ten patients diagnosed with IGE (16-37 years of age, mean 23 years; 4 male, all right hand 135

dominant) were recruited from the Royal Perth Hospital First Seizure Clinic and from a 136

private epilepsy clinic. The diagnosis of IGE was made by an epileptologist (JWD, NDL or 137

PLS) on the basis of clinical assessment and EEG. Patients were divided into two groups 138

according to whether or not they were currently being treated with an AED (not on treatment: 139

AEDNO, on treatment: AEDON). Further patient details are presented in Table 1. Patients 140

taking multiple AEDs were not recruited. Four patients underwent repeat studies (at least two 141

weeks apart) after commencing (patients #1, #2 and #4) or ceasing (patients #5) AED 142

treatment as part of their prescribed epilepsy management. In total, seven sets of 143

measurements (three unique, four crossover) were obtained from patients off treatment, and 144

seven from patients on AED treatment (three unique, four crossover). Apart from patient #6, 145

all patients were seizure-free for at least 3 months following testing. Twelve healthy 146

individuals (19-32 years of age, mean 23 years; nine male, all right hand dominant) without a 147

history of epilepsy in first-degree relatives were recruited as a control group. Approval for the 148

clinical arm of the study was obtained from the Royal Perth Hospital Human Ethics 149

Committee, and University of Western Australia Human Research Ethics Committee granted 150

approval for control measurements. All participants provided written informed consent 151

according to the Declaration of Helsinki.152

153

Testing was performed at 9 AM, after a minimum of seven hours uninterrupted sleep the 154

night before. Participants abstained from alcohol in the 24 hours prior to testing and from 155

stimulant drinks (e.g. coffee, ‘energy drinks’) on the day of testing. The IGE group were 156

tested at least one week after their last generalised tonic-clonic seizure, and at least 24 hours 157



Page 8 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

8

after any other clinical seizure type. No participants were taking medications known to alter 158

seizure threshold (other than a single AED).159

160

TMS161

MEPs were recorded from the right FDI by surface EMG (sample rate 10kHz, amplification 162

x500, filtering 0.02–20kHz). TMS was delivered through a 7cm figure-of-eight coil 163

connected to three magnetic stimulators (Magstim 2002; Magstim Co., UK) linked through a 164

custom-built device. The coil was held tangential to the head and positioned in the 165

parasagittal plane at the optimal site for activation of the right FDI (determined from initial 166

exploration over a 1cm grid). Stimuli were delivered at 0.2Hz with the FDI relaxed, and 167

peak-peak MEP amplitude was measured. RMT was determined according to the Rossini-168

Rothwell criterion [34]. As recommended by safety guidelines, in all IGE subjects surface 169

EMG of the right deltoid muscle was monitored so as to detect intracortical spread of 170

excitation [35], and a neurologist (PLS) was present for all testing. No adverse events 171

occurred during testing.172

173

LICI/LICF174

LICI and LICF curves were generated using paired-pulse TMS. The single-pulse TMS 175

intensity needed to evoke a MEP of 1mV amplitude was first determined (I1mV), and both 176

stimuli in the paired-pulse were set to this intensity. The first pulse in a pair was designated 177

the priming stimulus and the second pulse the test stimulus (Figure 1). Paired-pulses were 178

delivered at 14 ISIs spaced so as to encompass the periods of LICI and LICF (100, 150, 170, 179

180, 190, 200, 210, 220, 230, 240, 250, 275, 300, 350ms). ISIs were pseudo-randomised and 180

divided into four blocks, with eight stimuli for each ISI. At each ISI the mean TS-MEP 181

amplitude was calculated as a percentage of the mean PS-MEP. The ISIs corresponding to 182
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each subject’s greatest LICI and LICF were used in the triple-pulse SICI measurements 183

(SICILICI and SICILICF). In participants with IGE who did not show LICF, the ISI with 184

greatest PS-TS amplitude was used to evaluate SICILICF.185

186

SICI187

Triple-pulse TMS was used to measure SICI during LICI and LICF (Figure 1). A supra-188

threshold PS (at I1mV) was followed by a paired-pulse stimulus designed to elicit SICI, 189

consisting of a sub-threshold conditioning stimulus followed 2ms later by a supra-threshold 190

test stimulus (TS*) that was intensity-adjusted so as to give a MEP of 1mV in the presence of 191

LICI or LICF. The CS was delivered at three intensities: 0.7, 0.8 and 0.9 RMT. An ISI of 2ms 192

was chosen to avoid contamination of SICI by SICF [36]. Unprimed SICI was measured in 193

the absence of a PS, with TS at I1mV, and calculated from the ratio (expressed as a percentage) 194

of mean conditioned MEP amplitude (10 stimuli) to mean unconditioned test MEP amplitude 195

(10 stimuli). SICILICI and SICILICF were measured in the presence of a PS, and calculated 196

from mean conditioned TS* MEP amplitude to mean unconditioned TS* amplitude (10 197

stimuli). Stimuli were delivered in blocks of 40 for each of unprimed SICI, SICILICI and 198

SICILICF, comprised of 10 conditioned stimuli at each level of RMT and 10 unconditioned 199

stimuli, interspersed pseudo-randomly. 200

201

Data analysis202

Data was compared between Controls, AEDNO and AEDON. All data are expressed as mean ± 203

standard deviation.204

LICI/LICF: Mixed model analysis with random individual effects was used to compare 205

responses between groups, and to compare each group’s responses to baseline. Data was log 206
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transformed where required to better approximate normality for inference purposes.207

Adjustment for possible differences in baseline values did not alter results.208

SICI: Mixed model repeated measures analysis was performed with factors GROUP and209

RMT for each CONDITION (unprimed SICI, SICILICI, SICILICF). Responses were compared 210

between groups, and within each group responses were compared to baseline for each 211

condition. Adjustment for possible differences in baseline values did not alter results.212

213

Results214

LICI and LICF215

RMT was similar between groups (p=0.496). There was no significant difference between 216

baseline MEP amplitudes for Controls (1.60±0.30mV), AEDNO (1.19±0.15mV) and AEDON217

(1.35±0.09mV; p=0.46).218

219

Figure 2A presents the LICI/LICF curves for each group. LICI was of similar magnitude in 220

all groups at ISI 100-150ms (p=0.09), with a significant overall reduction in MEP amplitude 221

compared to baseline (mean 46±8% of baseline, p<0.001). At longer ISIs (200-250ms) the 222

Control group demonstrated LICF as expected, with MEP amplitude significantly increased 223

compared to baseline (mean 141±17% of baseline, p=0.015) and peaking at 210ms (151±21%224

of baseline). At these longer ISIs there was no statistically significant difference in amplitude225

compared to baseline for AEDNO (107±12%, p=0.56), while for AEDON the amplitude was 226

reduced, but with marginal significance (79±10% of baseline, p=0.045). There were 227

significant differences at ISI 200-250ms when groups were compared: amplitude in AEDON228

was lower than both AEDNO (p<0.001) and Controls (p=0.003), while those for AEDNO and 229

Controls were not significantly different to each other (p=0.2). Stratifying AEDON according 230

to specific AEDs (Figure 2B) suggests that the difference observed between AEDON and 231
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AEDNO may be due to lamotrigine. LICI and LICF values for patients tested both on and off 232

AED treatment are listed in Table 2.233

234

SICI235

There was no significant difference in TS*-MEP amplitude between groups (mean 236

1.20±0.19mV; p=0.387), and no difference between MEPs for PS and TS* (p=0.245). The 237

ISI for SICILICI was 100ms in all participants, whereas the ISI for SICILICF varied between 238

180-250ms (median 210ms, interquartile range 203-230ms). Figure 3 shows SICI as a 239

function of CS intensity (0.7-0.9RMT) for each group (Control, AEDNO, AEDON) and each 240

stimulus combination (unprimed SICI, SICILICI, SICILICF). The mean values for unprimed 241

SICI, SICILICI, SICILICF in patients tested both on and off AED treatment are listed in Table 2.242

243

The overall mean unprimed SICI amplitude in the Control group was 29±4% of baseline. 244

Compared to this, SICI was significantly reduced during LICI (68±11% of baseline, 245

p<0.001), and remained reduced during LICF (53±7% of baseline, p<0.001). The difference 246

between SICILICI and SICILICF was also significant (p=0.02). 247

248

For the AEDON group, SICILICI (70±10% of baseline) and SICILICF (55±14% of baseline) were 249

significantly reduced compared to unprimed SICI (37±12% of baseline; p<0.001 and p=0.03,250

respectively). Unprimed SICI and SICILICI in AEDON were no different to the Control group 251

(p=0.500 and p=0.360, respectively).252

253

For the AEDNO group, unprimed SICI was reduced compared to AEDON and Controls at254

CS=0.8RMT (56±4% of baseline, p=0.001 and p=0.004, respectively) and 0.9RMT (52±8%255

of baseline, p=0.053 and p=0.01, respectively). SICILICI was 120±10% of baseline, indicating 256
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that CS increased TS* amplitude (p=0.017). This was significantly different to the Control 257

(p=0.007) and AEDON (p=0.009) groups, in which SICILICI was less than 100%. During LICF, 258

SICI in the AEDNO group was reduced compared to unprimed SICI (72±5% of baseline, 259

p=0.015). Figure 4 shows SICI MEP waveforms from a representative participant, 260

demonstrating the expected reduction in conditioned MEP amplitude without PS, but that 261

with PS the conditioned MEP is increased in amplitude relative to the unconditioned MEP. 262

263

There was no difference in SICILICF between any groups (p=0.980).264

265

Discussion266

The present study demonstrates significant differences in cortical inhibition between 267

individuals with IGE and healthy control subjects. Although LICI was unchanged in IGE, 268

there was no evidence for the post-LICI period of facilitation (LICF) that is present in healthy 269

individuals. The strength of SICI was also reduced, and when measured during LICI, the 270

SICI protocol elicited a paradoxical excitatory rather than an inhibitory response in untreated 271

epileptics. Treatment with AEDs was associated with restoration of normal levels of SICI. 272

These findings point to altered function of GABAergic inhibition in epilepsy, and suggest273

that under some circumstances GABA may have an excitatory rather than an inhibitory action 274

in the cortex in IGE.275

276

The conventional GABA hypothesis of epilepsy suggests that “a reduction of GABAergic 277

inhibition results in epilepsy while an enhancement of GABAergic inhibition results in an 278

antiepileptic effect” [37]. In recent years this hypothesis has been challenged by reports of 279

GABAARs with excitatory effects, likely due to alterations in chloride homeostasis (for 280

reviews, see [4, 31-33, 38-40]). Activation of the GABAAR opens Cl- channels allowing a281
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flow of ions down their electrochemical gradient. The direction of this gradient is set by the 282

neuronal membrane cotransporters NKCC1 (influx of ions) and KCC2 (efflux of ions) [41].283

In utero, relative over-expression of NKCC1 results in high intracellular Cl- concentration, 284

and thus opening of the GABAAR Cl- channel results in a depolarising (outward) ion flow 285

[42-46]. In normal early human infant life the relative expression of NKCC1 and KCC2 286

reverses, with over-expression of KCC2, thereby lowering intracellular Cl- concentration 287

such that GABAAR activation induces hyperpolarisation [47-48]. In vitro studies of adult 288

human brain tissue resected for treatment of pharmaco-resistant TLE demonstrate 289

pathological over-expression of NKCC1 and under-expression of KCC2, in which case 290

activation of GABAARs may lead to Cl- efflux and neuronal depolarisation [49-53]. These 291

same findings have also been reported in epileptogenic peritumoural adult human brain tissue292

[54], and in combination with data from animal models suggest a potentially 293

epileptogenic/ictogenic role for GABAARs in epilepsy [4, 41]. Recent studies have also 294

identified mutations affecting GABAergic signalling in some individuals with familial IGE, 295

including loss-of-function mutations in Cl- channels resulting in abnormally elevated 296

intracellular Cl- concentration [55-57].297

298

One possible explanation as to why SICILICI facilitated MEPs is that LICI may contribute to a 299

reversal of the chloride gradient. During LICI, the GABABR IPSP (which is mediated by K+300

outflow [7, 58-59]) may reduce KCC2 activity (which depends on the K+ gradient to 301

transport Cl- out of the cell) and result in a temporarily higher intracellular Cl- concentration 302

[41, 60-63]. A sufficiently high concentration could lead to Cl- efflux when GABAARs are 303

activated, and therefore a depolarising response to SICI. Collapse of the Cl- gradient with 304

subsequent depolarising responses has been demonstrated in animal models of focal and 305

generalised epilepsy [64-66] and in adult (focal) epileptic human brain tissue [10, 29]. 306
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Changes in K+/Cl- dynamics are thought to contribute to ictal and inter-ictal activity in 307

epilepsy [4, 40, 67], and may underlie the process of ictogenesis by converting a negative 308

(inhibitory) feedback loop (pyramidal cell activation of inhibitory interneurons) into a 309

positive (excitatory) loop [41, 68-69].310

311

In keeping with our previous findings [19], in healthy individuals LICI at ISIs of 100-150ms 312

was followed by a period of intracortical facilitation (LICF) between 200-250ms, and 313

disinhibition (detectable as a reduction in SICI) was present throughout both of these periods. 314

This pattern was not observed in IGE, where LICF was absent in both treated and untreated 315

groups of patients, although disinhibition (as determined by SICILICF) was present albeit 316

weaker for AEDNO. A reduction in the strength (and possibly duration) of pre-synaptic317

GABABR activity has been demonstrated in surgically resected brain tissue from adults with 318

focal epilepsy [29], and this could explain the absence of LICF with weaker SICILICF in our 319

patients.320

321

Consistent with previous studies in IGE [21-25] and one study of patients with generalised 322

epilepsy secondary to GABAAR subunit mutation (conferring partial loss of function) [70],323

we found a reduction in the strength of unprimed SICI in untreated epilepsy patients 324

compared to healthy controls, and interpret this as evidence of impaired GABAAR function.325

While this was restored by AED treatment, the number of AEDs in relation to sample size 326

does not enable this restoration of GABAAR function to be interpreted pharmacologically. 327

However, in contrast to Badawy et al. [21-24, 71-72] we did not observe LICF in IGE. 328

Badaway et al. found no evidence of LICI in their healthy controls, whereas we found LICI in 329

both controls and IGE, suggesting that there may be an interrelationship between the presence 330

of LICI and LICF [19]. As LICI is a well-established phenomenon in healthy individuals, its 331
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the absence in the Badaway et al. control groups complicates comparison with the present 332

findings.333

334

The abnormalities in GABA-mediated measurements in the present study warrant further 335

investigation and may have clinical applications for the diagnosis and treatment of IGE. The 336

diagnosis of IGE is primarily clinical based on history and examination, with EEG performed 337

to support the diagnosis and aid in syndromal subclassification and prognostication [73].338

However, up to ~50% of individuals who present with a seizure will have a normal inter-ictal 339

EEG (which does not exclude the diagnosis of epilepsy) and in others the EEG may be 340

abnormal yet non-diagnostic [74-75]. In these individuals, if the history is not clearly 341

diagnostic of IGE then measurement of LICF and SICILICI may be a useful diagnostic 342

adjunct. 343

344

In conclusion, we investigated the relationship between pre-synaptic disinhibition and post-345

synaptic inhibition in the motor cortex of treated and untreated IGE, and find that, during the 346

period of post-synaptic inhibition, activation of GABAARs may have excitatory effects. The 347

findings lend in vivo support to a growing body of evidence from experimental models and in 348

vitro studies of human epileptic brain tissue that GABA may have an excitatory role in 349

epilepsy. Coupled with alterations in disinhibition, the present findings point to a complex 350

modulation of pre- and post-synaptic GABAergic mechanisms in epilepsy. 351

352

Acknowledgements: We thank Dr Philip Tuch (Neurologist) for his assistance in patient 353

recruitment, and the patients and Control subjects who participated in the study. Financial 354

support for the study was provided by the Neuromuscular Foundation of Western Australia.355

356



Page 16 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

16

Figure Legends:356

Figure 1: Protocol diagram. TOP: LICI/LICF curves were generated from paired-pulse TMS, 357

made up of a supra-threshold PS followed by TS (1mV MEP) delivered 100-350ms later. 358

This curve was used to identify the timing of strongest LICI (∨) and LICF(∧) for each 359

individual. BOTTOM: Paired- and triple-pulse TMS was used to measure LICI, LICF, and 360

SICI during both LICI and LICF. LICI/LICF was calculated at each ISI from the amplitude 361

ratio of primed-to-unprimed TS. Unprimed SICI was calculated from the amplitude ratio of 362

unconditioned-to-conditioned TS at ISI 2ms. At the two post-PS intervals corresponding to 363

LICI and LICF, TS intensity was adjusted to restore MEP amplitude to 1mV (TS*) in the 364

presence of PS and SICI was then measured by delivering a CS prior to TS*.365

366

Figure 2: LICI/LICF curves: Mean paired-pulse (PS-TS) MEP amplitudes at each ISI, 367

expressed as a percentage of single-pulse baseline. Error bars represent standard error. (A) 368

All subject groups; (B) Subjects in AEDON only, according to specific AEDs. 369

370

Figure 3: SICI curves: Mean conditioned MEP amplitudes expressed as a percentage of 371

unconditioned amplitudes. Values <100% indicate inhibition (0% corresponds to complete 372

suppression of MEPs), and values >100% indicate a facilitatory response. Error bars 373

represent standard error.374

375

Figure 4: MEP waveforms (overlay of 3) from a representative IGE patient (Subject 1, 376

AEDNO). Without the priming stimulus (top row), conditioned MEP amplitude (CS-TS) is 377

reduced compared to unconditioned (TS) amplitude. Measurements made after a PS (during 378

LICI) show the conditioned MEP amplitude to be greater than for the unconditioned MEP.379

380
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Tables:381

Table 1: Demographics of patients with idiopathic generalised epilepsy382

Patient Gender Age AED
Months on 

current AED#
Epilepsy 

Syndrome
Inter-ictal 

EEG
Months since 
last seizure

AEDNO

1* F 16 - IGETCS GSW 3
2* M 22 - JME GSW 0.3
3 F 19 - IGETCS GSW 9
4* M 35 - JAE GSW 1
5* M 22 - IGETCS GSW 27
6 F 26 - JME GSW, PPR 0.25
7 F 37 - IGETCS GSW 14

AEDON

1* F 17 LTG 3 IGETCS GSW 7
2* M 22 VPA 0.5 JME GSW 1
4* M 36 VPA 8 JAE GSW 6
5* M 21 LTG 17 IGETCS GSW 24
8 M 18 VPA 10 IGETCS GSW 5
9 F 18 LTG 8 JAE GSW 36
10 F 18 LTG 10 JAE GSW 6

GSW: sporadic generalised spike and wave pattern, IGETCS: idiopathic generalised epilepsy 383
with tonic-clonic seizures, JAE: juvenile absence epilepsy, LTG: lamotrigine, PPR:384
photoparoxysmal response, VPA: sodium valproate. 385
* indicates subject tested both on and off AEDs386
# ‘current AED’ refers to both medication and dosage387

388
Table 2: LICI, LICF and SICI in subjects tested both on and off AED treatment389

LICI LICF Unprimed SICI SICILICI SICILICF

Patient Off On Off On Off On Off On Off On
1 53% 90% 148% 116% 35% 7% -15% 12% 25% 13%
2 51% 63% 157% 118% 70% 88% 30% 18% 36% 65%
4 3% 12% 117% 75% 46% 41% -28% 4% 35% 17%
5 1% 4% 65% 63% 44% 73% -60% # 43% -4%

LICI values correspond to ISI 100ms, and LICF values correspond to each subject’s peak 390
ISIs (as described under Methods). All SICI values are averaged across CS 0.7-0.9RMT.391
# unable to measure SICILICI as maximum stimulator output reached392
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Tables:612

Table 1: Demographics of patients with idiopathic generalised epilepsy613

Patient Gender Age AED
Months on 

current AED#
Epilepsy 

Syndrome
Inter-ictal 

EEG
Months since 
last seizure

AEDNO

1* F 16 - IGETCS GSW 3
2* M 22 - JME GSW 0.3
3 F 19 - IGETCS GSW 9
4* M 35 - JAE GSW 1
5* M 22 - IGETCS GSW 27
6 F 26 - JME GSW, PPR 0.25
7 F 37 - IGETCS GSW 14

AEDON

1* F 17 LTG 3 IGETCS GSW 7
2* M 22 VPA 0.5 JME GSW 1
4* M 36 VPA 8 JAE GSW 6
5* M 21 LTG 17 IGETCS GSW 24
8 M 18 VPA 10 IGETCS GSW 5
9 F 18 LTG 8 JAE GSW 36
10 F 18 LTG 10 JAE GSW 6

GSW: sporadic generalised spike and wave pattern, IGETCS: idiopathic generalised epilepsy 614
with tonic-clonic seizures, JAE: juvenile absence epilepsy, LTG: lamotrigine, PPR:615
photoparoxysmal response, VPA: sodium valproate. 616
* indicates subject tested both on and off AEDs617
# ‘current AED’ refers to both medication and dosage618

619
Table 2: LICI, LICF and SICI in subjects tested both on and off AED treatment620

LICI LICF Unprimed SICI SICILICI SICILICF

Patient Off On Off On Off On Off On Off On
1 53% 90% 148% 116% 35% 7% -15% 12% 25% 13%
2 51% 63% 157% 118% 70% 88% 30% 18% 36% 65%
4 3% 12% 117% 75% 46% 41% -28% 4% 35% 17%
5 1% 4% 65% 63% 44% 73% -60% # 43% -4%

LICI values correspond to ISI 100ms, and LICF values correspond to each subject’s peak 621
ISIs (as described under Methods). All SICI values are averaged across CS 0.7-0.9RMT.622
# unable to measure SICILICI as maximum stimulator output reached623

624
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