

MURDOCH RESEARCH REPOSITORY

This is the author's final version of the work, as accepted for publication following peer review but without the publisher's layout or pagination. The definitive version is available at

http://dx.doi.org/10.1016/j.seizure.2015.01.014

Silbert, B.I., Heaton, A.E., Cash, R.F.H., James, I., Dunne, J.W., Lawn, N.D., Silbert, P.L., Mastaglia, F.L. and Thickbroom, G.W. (2015) Evidence for an excitatory GABAA response in human motor cortex in idiopathic generalised epilepsy. Seizure, 26 . pp. 36-42.

http://researchrepository.murdoch.edu.au/26063/

Copyright: © 2015 British Epilepsy Association It is posted here for your personal use. No further distribution is permitted.

1	Evidence for an excitatory GABA _A response in human motor cortex in
2	idiopathic generalised epilepsy
3	Benjamin I Silbert ^a , Alexandra E Heaton ^a , Robin FH Cash ^{a,b} , Ian James ^c , John W Dunne ^d ,
4	Nicholas D Lawn ^d , Peter L Silbert ^d , Frank L Mastaglia ^a , Gary W Thickbroom ^a
5	^a Western Australian Neuroscience Research Institute, University of Western Australia, Perth,
6	Western Australia, Australia. [Western Australian Neuroscience Research Institute, 4th Floor,
7	A Block, QEII Medical Centre, Verdun Street, Nedlands, Western Australia 6009, Australia]
8	^b Division of Brain, Imaging and Behaviour - Systems Neuroscience, Toronto Western
9	Research Institute, University Health Network, Toronto, Ontario, Canada. [Division of Brain,
10	Imaging and Behaviour - Systems Neuroscience, Toronto Western Research Institute, 339
11	Bathurst Street, MP14-324, Toronto, Ontario M5T 2S8, Canada]
12	^c Centre for Clinical Immunology and Biomedical Statistics, Institute for Immunology and
13	Infectious Diseases, Murdoch University, Perth, Western Australia, Australia. [Centre for
14	Clinical Immunology and Biomedical Statistics, Institute for Immunology and Infectious
15	Diseases, Building 390, Murdoch University, Discovery Way, Murdoch, Western Australia
16	6150, Australia]
17	^d Department of Neurology, Royal Perth Hospital, Perth, Western Australia, Australia.
18	[Department of Neurology, Level 8, A Block, Royal Perth Hospital, GPO Box X2213, Perth,
19	Western Australia 6001, Australia]
20	Address for Correspondence:
21	GW Thickbroom
22	M518, University of Western Australia
23	Nedlands, Western Australia 6009
24	Australia
25	Email: gary.thickbroom@gmail.comPhone: +61 8 9346 4479
26	Conflict of interest: None of the authors have potential conflicts of interest to be disclosed.
27	Highlights:
28	1. TMS was used to explore GABA-mediated inhibition in IGE
29	2. Post-synaptic GABA _B inhibition (LICI) was normal, but pre-synaptic LICF reduced
30	3. GABA _A inhibition (SICI) was reduced in untreated but not treated IGE
31	4. When tested during $GABA_B$ inhibition, the SICI protocol was excitatory
32	5. During ongoing $GABA_B$ inhibition, $GABA_A$ activation may be excitatory

33

33	Abstract
34	Purpose: Impaired GABAergic inhibition has been implicated in the pathophysiology of
35	epilepsy. The possibility of a paradoxical excitatory effect of GABA in epilepsy has been
36	suggested, but has not been investigated in vivo. We investigated pre- and post-synaptic
37	GABAergic mechanisms in patients with idiopathic generalised epilepsy (IGE).
38	Methods: In 10 patients and 12 control subjects we explored short- and long-interval
39	intracortical inhibition (SICI, LICI; post-synaptic GABA _A and GABA _B -mediated
40	respectively) and long-interval intracortical facilitation (LICF; pre-synaptic disinhibition)
41	using transcranial magnetic stimulation.
42	Results: While post-synaptic GABA _B -mediated inhibition was unchanged in IGE (p=0.09),
43	LICF was reduced compared to controls (controls: 141±17% of baseline; untreated patients:
44	107±12%, p=0.2; treated patients: 79±10%, p=0.003). GABA _A -mediated inhibition was
45	reduced in untreated patients (response amplitude 56±4% of baseline vs. 26±6% in controls,
46	p=0.004) and normalised with treatment (37 \pm 12%, p=0.5 vs. controls). When measured
47	during LICI, GABA _A -mediated inhibition became excitatory in untreated IGE (response
48	amplitude $120\pm10\%$ of baseline, p=0.017), but not in treated patients.
49	Conclusions: Pre- and post-synaptic GABA-mediated inhibitory mechanisms are altered in
50	IGE. The findings lend in vivo support to evidence from experimental models and in vitro
51	studies of human epileptic brain tissue that GABA may have a paradoxical excitatory role in
52	ictogenesis.
53	Keywords: transcranial magnetic stimulation, epilepsy, cortical excitability, GABA,
54	disinhibition

55 Abbreviations:

- 56 AED: anti-epileptic drug
- 57 AED_{NO}: IGE not on AEDs (subject group)
- 58 AED_{ON}: IGE on AEDs (subject group)
- 59 CS: conditioning stimulus
- 60 EEG: electroencephalography
- 61 EMG: electromyography
- 62 FDI: first dorsal interosseous (muscle)
- 63 GABAR: GABA receptor
- 64 GABA_AR: GABA_A receptor
- 65 GABA_BR: GABA_B receptor
- I_{1mV} : intensity needed to evoke a MEP of 1mV amplitude
- 67 IGE: idiopathic generalised epilepsy
- 68 ISI: inter-stimulus interval
- 69 IPSP: inhibitory post-synaptic potential
- 70 JME: juvenile myoclonic epilepsy
- 71 KCC2: K^+/Cl^- cotransporter 2
- 72 LCD: late cortical disinhibition
- 73 LICF: long-interval intracortical facilitation
- 74 LICI: long-interval intracortical inhibition
- 75 MEP: motor evoked potential
- 76 NKCC1: $Na^+/K^+/2Cl^-$ cotransporter 1
- 77 PS: priming stimulus
- 78 RMT: resting motor threshold
- 79 SICI: short-interval intracortical inhibition

- 80 TLE: temporal lobe epilepsy
- 81 TMS: transcranial magnetic stimulation
- 82 TS: test stimulus
- 83 TS*: adjusted test stimulus
- 84

84 Introduction

85	Epilepsy is characterised by neuronal hyperexcitability and hypersynchronicity which
86	manifests as recurrent seizures [1-2]. The pathophysiological processes underlying epilepsy
87	in its various forms remain incompletely understood (for reviews, see Engelborghs et al. [1]
88	and McCormick and Contreras [2]) but an imbalance between excitatory and inhibitory
89	neuronal inputs is usually implicated. Critical to understanding the pathophysiology of
90	epileptogenesis and ictogenesis are abnormalities in synaptic transmission, and in particular
91	in the activity of GABAergic synaptic networks [2-5]. An improved understanding of in vivo
92	synaptic function in epilepsy may inform diagnosis and clinical management.
93	
94	Within the central nervous system, GABAergic activity can regulate neuronal firing,
95	synchronicity and network oscillations [6]. At a cellular level, activation of post-synaptic
96	GABA receptors results in rapid transient (GABAAR-mediated) and longer-lasting
97	(GABA _B R-mediated) inhibitory post-synaptic potentials that can modulate or gate firing of
98	the post-synaptic neuron [7-9]. Pre-synaptic GABA _B Rs remain active for longer than post-
99	synaptic GABA _B Rs, and regulate (reduce) further GABA release by inhibiting Ca^{2+} influx,
100	resulting in disinhibition [8, 10-11].
101	
102	In human motor cortex, the activation of GABARs can be measured with TMS using paired-
103	pulse stimulation. SICI occurs when a sub-threshold conditioning pulse is delivered ~2-6ms
104	before a supra-threshold test pulse; the conditioning pulse elicits a GABA _A R-mediated IPSP
105	and thereby reduces the amplitude of the MEP to the test pulse [12-13] . The ratio of the
106	amplitude of the conditioned MEP to the MEP for the test pulse alone can be used as an index

107 of GABA_AR activation. A supra-threshold conditioning pulse results in activation of post-

108 synaptic GABA_BRs, reducing test MEP amplitudes for conditioned-test ISIs of up to ~150ms

6
~

109	(LICI) [14-16]. Pre-synaptic GABA _B Rs activated by the conditioning pulse limit further
110	GABA release, and as they remain active for longer than post-synaptic $GABA_BRs$ a period
111	arises beyond LICI when disinhibition dominates (LCD), and during which MEP amplitude
112	is increased (LICF) and SICI reduced [17-19].
113	
114	As pre- and post-synaptic GABARs can exert widespread influence over neuronal firing,
115	their dysfunction has been implicated in the processes of epileptogenesis and ictogenesis [2,
116	4-5, 20]. Previous TMS studies in patients with untreated IGE have reported reduced levels of
117	SICI compared to non-epileptic control subjects [21-25], suggesting a state of cortical
118	hyperexcitability with altered (decreased) cortical GABAA activity. Normal levels of SICI
119	have been consistently reported in patients with IGE who are well controlled on AED therapy
120	[21-25], apart from those with JME in whom SICI may [23, 26] or may not [27-28] return to
121	normal levels. The effect of IGE on LICI is not certain. Although not yet explored in human
122	IGE in vivo, impaired GABA _B R-mediated auto-inhibition has been demonstrated in in vitro
123	studies of human brain tissue obtained from patients undergoing surgery for pharmaco-
124	resistant temporal lobe epilepsy [10, 29]. While GABA mediates cortical inhibition and
125	disinhibition in adults, it is known to have excitatory effects early in development [30]. An
126	excitatory role for GABA in epilepsy has also been suggested on the basis of findings in
127	animal models and surgically resected human brain tissue [31-33].
128	
129	In the present study we used TMS to compare the strengths of short- and long-interval
130	intracortical inhibition and disinhibition in the motor cortex in patients with treated and
131	untreated IGE and in controls.

132

133 Methods

7

134 Subjects

135 Ten patients diagnosed with IGE (16-37 years of age, mean 23 years; 4 male, all right hand 136 dominant) were recruited from the Royal Perth Hospital First Seizure Clinic and from a 137 private epilepsy clinic. The diagnosis of IGE was made by an epileptologist (JWD, NDL or 138 PLS) on the basis of clinical assessment and EEG. Patients were divided into two groups 139 according to whether or not they were currently being treated with an AED (not on treatment: 140 AED_{NO}, on treatment: AED_{ON}). Further patient details are presented in Table 1. Patients 141 taking multiple AEDs were not recruited. Four patients underwent repeat studies (at least two 142 weeks apart) after commencing (patients #1, #2 and #4) or ceasing (patients #5) AED 143 treatment as part of their prescribed epilepsy management. In total, seven sets of 144 measurements (three unique, four crossover) were obtained from patients off treatment, and 145 seven from patients on AED treatment (three unique, four crossover). Apart from patient #6, 146 all patients were seizure-free for at least 3 months following testing. Twelve healthy 147 individuals (19-32 years of age, mean 23 years; nine male, all right hand dominant) without a 148 history of epilepsy in first-degree relatives were recruited as a control group. Approval for the 149 clinical arm of the study was obtained from the Royal Perth Hospital Human Ethics 150 Committee, and University of Western Australia Human Research Ethics Committee granted 151 approval for control measurements. All participants provided written informed consent 152 according to the Declaration of Helsinki. 153 154 Testing was performed at 9 AM, after a minimum of seven hours uninterrupted sleep the

155 night before. Participants abstained from alcohol in the 24 hours prior to testing and from

- stimulant drinks (e.g. coffee, 'energy drinks') on the day of testing. The IGE group were
- 157 tested at least one week after their last generalised tonic-clonic seizure, and at least 24 hours

- after any other clinical seizure type. No participants were taking medications known to alterseizure threshold (other than a single AED).
- 160
- 161 **TMS**
- 162 MEPs were recorded from the right FDI by surface EMG (sample rate 10kHz, amplification
- 163 x500, filtering 0.02–20kHz). TMS was delivered through a 7cm figure-of-eight coil
- 164 connected to three magnetic stimulators (Magstim 200²; Magstim Co., UK) linked through a
- 165 custom-built device. The coil was held tangential to the head and positioned in the
- 166 parasagittal plane at the optimal site for activation of the right FDI (determined from initial
- 167 exploration over a 1cm grid). Stimuli were delivered at 0.2Hz with the FDI relaxed, and
- 168 peak-peak MEP amplitude was measured. RMT was determined according to the Rossini-
- 169 Rothwell criterion [34]. As recommended by safety guidelines, in all IGE subjects surface
- 170 EMG of the right deltoid muscle was monitored so as to detect intracortical spread of
- 171 excitation [35], and a neurologist (PLS) was present for all testing. No adverse events
- 172 occurred during testing.
- 173

174 LICI/LICF

175 LICI and LICF curves were generated using paired-pulse TMS. The single-pulse TMS

176 intensity needed to evoke a MEP of 1mV amplitude was first determined (I_{1mV}), and both

177 stimuli in the paired-pulse were set to this intensity. The first pulse in a pair was designated

- the priming stimulus and the second pulse the test stimulus (Figure 1). Paired-pulses were
- delivered at 14 ISIs spaced so as to encompass the periods of LICI and LICF (100, 150, 170,
- 180 180, 190, 200, 210, 220, 230, 240, 250, 275, 300, 350ms). ISIs were pseudo-randomised and
- 181 divided into four blocks, with eight stimuli for each ISI. At each ISI the mean TS-MEP
- amplitude was calculated as a percentage of the mean PS-MEP. The ISIs corresponding to

- 183 each subject's greatest LICI and LICF were used in the triple-pulse SICI measurements
- 184 (SICI_{LICI} and SICI_{LICF}). In participants with IGE who did not show LICF, the ISI with
- 185 greatest PS-TS amplitude was used to evaluate SICI_{LICF}.
- 186
- 187 **SICI**
- 188 Triple-pulse TMS was used to measure SICI during LICI and LICF (Figure 1). A supra-
- 189 threshold PS (at I_{1mV}) was followed by a paired-pulse stimulus designed to elicit SICI,
- 190 consisting of a sub-threshold conditioning stimulus followed 2ms later by a supra-threshold
- 191 test stimulus (TS*) that was intensity-adjusted so as to give a MEP of 1mV in the presence of
- 192 LICI or LICF. The CS was delivered at three intensities: 0.7, 0.8 and 0.9 RMT. An ISI of 2ms
- 193 was chosen to avoid contamination of SICI by SICF [36]. Unprimed SICI was measured in
- 194 the absence of a PS, with TS at I_{1mV} , and calculated from the ratio (expressed as a percentage)
- 195 of mean conditioned MEP amplitude (10 stimuli) to mean unconditioned test MEP amplitude
- 196 (10 stimuli). SICI_{LICI} and SICI_{LICF} were measured in the presence of a PS, and calculated
- 197 from mean conditioned TS* MEP amplitude to mean unconditioned TS* amplitude (10
- 198 stimuli). Stimuli were delivered in blocks of 40 for each of unprimed SICI, SICI_{LICI} and
- 199 SICI_{LICF}, comprised of 10 conditioned stimuli at each level of RMT and 10 unconditioned
- 200 stimuli, interspersed pseudo-randomly.
- 201

202 Data analysis

- 203 Data was compared between Controls, AED_{NO} and AED_{ON} . All data are expressed as mean \pm 204 standard deviation.
- 205 LICI/LICF: Mixed model analysis with random individual effects was used to compare
- 206 responses between groups, and to compare each group's responses to baseline. Data was log

007	(C 1 1	· 1/ 1//	• • • •	c •	C
207	transformed where re	annred to better	approximate normalif	v tor in	terence nurnoses
201	transformed where it	quilled to better	approximate normani	, i OI III	reference purposes.

- 208 Adjustment for possible differences in baseline values did not alter results.
- 209 SICI: Mixed model repeated measures analysis was performed with factors GROUP and
- 210 RMT for each CONDITION (unprimed SICI, SICI_{LICI}, SICI_{LICF}). Responses were compared
- 211 between groups, and within each group responses were compared to baseline for each
- 212 condition. Adjustment for possible differences in baseline values did not alter results.

213

214 **Results**

215 LICI and LICF

- 216 RMT was similar between groups (p=0.496). There was no significant difference between
- baseline MEP amplitudes for Controls (1.60±0.30mV), AED_{NO} (1.19±0.15mV) and AED_{ON}

218 (1.35±0.09mV; p=0.46).

219

220 Figure 2A presents the LICI/LICF curves for each group. LICI was of similar magnitude in 221 all groups at ISI 100-150ms (p=0.09), with a significant overall reduction in MEP amplitude 222 compared to baseline (mean $46\pm8\%$ of baseline, p<0.001). At longer ISIs (200-250ms) the 223 Control group demonstrated LICF as expected, with MEP amplitude significantly increased 224 compared to baseline (mean $141\pm17\%$ of baseline, p=0.015) and peaking at 210ms ($151\pm21\%$ 225 of baseline). At these longer ISIs there was no statistically significant difference in amplitude 226 compared to baseline for AED_{NO} (107 \pm 12%, p=0.56), while for AED_{ON} the amplitude was 227 reduced, but with marginal significance ($79\pm10\%$ of baseline, p=0.045). There were 228 significant differences at ISI 200-250ms when groups were compared: amplitude in AED_{ON} 229 was lower than both AED_{NO} (p<0.001) and Controls (p=0.003), while those for AED_{NO} and 230 Controls were not significantly different to each other (p=0.2). Stratifying AED_{ON} according 231 to specific AEDs (Figure 2B) suggests that the difference observed between AED_{ON} and

232	AED_{NO} may be due to lamotrigine. LICI and LICF values for patients tested both on and off
233	AED treatment are listed in Table 2.
234	
235	SICI
236	There was no significant difference in TS*-MEP amplitude between groups (mean
237	1.20 ± 0.19 mV; p=0.387), and no difference between MEPs for PS and TS* (p=0.245). The
238	ISI for $SICI_{LICI}$ was 100ms in all participants, whereas the ISI for $SICI_{LICF}$ varied between
239	180-250ms (median 210ms, interquartile range 203-230ms). Figure 3 shows SICI as a
240	function of CS intensity (0.7-0.9RMT) for each group (Control, AED_{NO} , AED_{ON}) and each
241	stimulus combination (unprimed SICI, SICI _{LICI} , SICI _{LICF}). The mean values for unprimed
242	SICI, SICI _{LICI} , SICI _{LICF} in patients tested both on and off AED treatment are listed in Table 2.
243	
244	The overall mean unprimed SICI amplitude in the Control group was 29±4% of baseline.
245	Compared to this, SICI was significantly reduced during LICI (68±11% of baseline,
246	p<0.001), and remained reduced during LICF (53±7% of baseline, p<0.001). The difference
247	between SICI _{LICI} and SICI _{LICF} was also significant (p=0.02).
248	
249	For the AED _{ON} group, SICI _{LICI} (70 \pm 10% of baseline) and SICI _{LICF} (55 \pm 14% of baseline) were
250	significantly reduced compared to unprimed SICI (37±12% of baseline; p<0.001 and p=0.03,
251	respectively). Unprimed SICI and SICI _{LICI} in AED_{ON} were no different to the Control group
252	(p=0.500 and p=0.360, respectively).
253	
254	For the AED_{NO} group, unprimed SICI was reduced compared to AED_{ON} and Controls at
255	CS=0.8RMT (56±4% of baseline, p=0.001 and p=0.004, respectively) and 0.9RMT (52±8%
256	of baseline, p=0.053 and p=0.01, respectively). SICILICI was 120±10% of baseline, indicating

257	that CS increased TS* amplitude (p=0.017). This was significantly different to the Control
258	(p=0.007) and AED _{ON} (p=0.009) groups, in which SICI _{LICI} was less than 100%. During LICF,
259	SICI in the AED _{NO} group was reduced compared to unprimed SICI (72 \pm 5% of baseline,
260	p=0.015). Figure 4 shows SICI MEP waveforms from a representative participant,
261	demonstrating the expected reduction in conditioned MEP amplitude without PS, but that
262	with PS the conditioned MEP is increased in amplitude relative to the unconditioned MEP.
263	
264	There was no difference in SICI _{LICF} between any groups (p=0.980).
265	
266	Discussion
267	The present study demonstrates significant differences in cortical inhibition between
268	individuals with IGE and healthy control subjects. Although LICI was unchanged in IGE,
269	there was no evidence for the post-LICI period of facilitation (LICF) that is present in healthy
270	individuals. The strength of SICI was also reduced, and when measured during LICI, the
271	SICI protocol elicited a paradoxical excitatory rather than an inhibitory response in untreated
272	epileptics. Treatment with AEDs was associated with restoration of normal levels of SICI.
273	These findings point to altered function of GABAergic inhibition in epilepsy, and suggest
274	that under some circumstances GABA may have an excitatory rather than an inhibitory action
275	in the cortex in IGE.
276	
277	The conventional GABA hypothesis of epilepsy suggests that "a reduction of GABAergic
278	inhibition results in epilepsy while an enhancement of GABAergic inhibition results in an
279	antiepileptic effect" [37]. In recent years this hypothesis has been challenged by reports of

- 280 GABA_ARs with excitatory effects, likely due to alterations in chloride homeostasis (for
- reviews, see [4, 31-33, 38-40]). Activation of the GABA_AR opens Cl⁻ channels allowing a

282	flow of ions down their electrochemical gradient. The direction of this gradient is set by the
283	neuronal membrane cotransporters NKCC1 (influx of ions) and KCC2 (efflux of ions) [41].
284	In utero, relative over-expression of NKCC1 results in high intracellular Cl ⁻ concentration,
285	and thus opening of the GABAAR Cl ⁻ channel results in a depolarising (outward) ion flow
286	[42-46]. In normal early human infant life the relative expression of NKCC1 and KCC2
287	reverses, with over-expression of KCC2, thereby lowering intracellular Cl ⁻ concentration
288	such that GABA _A R activation induces hyperpolarisation [47-48]. In vitro studies of adult
289	human brain tissue resected for treatment of pharmaco-resistant TLE demonstrate
290	pathological over-expression of NKCC1 and under-expression of KCC2, in which case
291	activation of GABA _A Rs may lead to Cl ⁻ efflux and neuronal depolarisation [49-53]. These
292	same findings have also been reported in epileptogenic peritumoural adult human brain tissue
293	[54], and in combination with data from animal models suggest a potentially
294	epileptogenic/ictogenic role for GABA _A Rs in epilepsy [4, 41]. Recent studies have also
295	identified mutations affecting GABAergic signalling in some individuals with familial IGE,
296	including loss-of-function mutations in Cl ⁻ channels resulting in abnormally elevated
297	intracellular Cl ⁻ concentration [55-57].
298	

299 One possible explanation as to why SICI_{LICI} facilitated MEPs is that LICI may contribute to a

300 reversal of the chloride gradient. During LICI, the GABA_BR IPSP (which is mediated by K⁺

301 outflow [7, 58-59]) may reduce KCC2 activity (which depends on the K⁺ gradient to

302 transport Cl⁻ out of the cell) and result in a temporarily higher intracellular Cl⁻ concentration

303 [41, 60-63]. A sufficiently high concentration could lead to Cl⁻ efflux when GABA_ARs are

- activated, and therefore a depolarising response to SICI. Collapse of the Cl⁻ gradient with
- 305 subsequent depolarising responses has been demonstrated in animal models of focal and

306 generalised epilepsy [64-66] and in adult (focal) epileptic human brain tissue [10, 29].

307	Changes in K ⁺ /Cl ⁻ dynamics are thought to contribute to ictal and inter-ictal activity in
308	epilepsy [4, 40, 67], and may underlie the process of ictogenesis by converting a negative
309	(inhibitory) feedback loop (pyramidal cell activation of inhibitory interneurons) into a
310	positive (excitatory) loop [41, 68-69].
311	
312	In keeping with our previous findings [19], in healthy individuals LICI at ISIs of 100-150ms
313	was followed by a period of intracortical facilitation (LICF) between 200-250ms, and
314	disinhibition (detectable as a reduction in SICI) was present throughout both of these periods.
315	This pattern was not observed in IGE, where LICF was absent in both treated and untreated
316	groups of patients, although disinhibition (as determined by SICILICF) was present albeit
317	weaker for AED_{NO} . A reduction in the strength (and possibly duration) of pre-synaptic
318	GABA _B R activity has been demonstrated in surgically resected brain tissue from adults with
319	focal epilepsy [29], and this could explain the absence of LICF with weaker SICI _{LICF} in our
320	patients.
321	
322	Consistent with previous studies in IGE [21-25] and one study of patients with generalised
323	epilepsy secondary to GABA _A R subunit mutation (conferring partial loss of function) [70],
324	we found a reduction in the strength of unprimed SICI in untreated epilepsy patients
325	compared to healthy controls, and interpret this as evidence of impaired GABA _A R function.
326	While this was restored by AED treatment, the number of AEDs in relation to sample size
327	does not enable this restoration of GABA _A R function to be interpreted pharmacologically.
328	However, in contrast to Badawy et al. [21-24, 71-72] we did not observe LICF in IGE.
329	Badaway et al. found no evidence of LICI in their healthy controls, whereas we found LICI in
330	both controls and IGE, suggesting that there may be an interrelationship between the presence
331	of LICI and LICF [19]. As LICI is a well-established phenomenon in healthy individuals, its

the absence in the Badaway et al. control groups complicates comparison with the presentfindings.

334

335	The abnormalities in GABA-mediated measurements in the present study warrant further
336	investigation and may have clinical applications for the diagnosis and treatment of IGE. The
337	diagnosis of IGE is primarily clinical based on history and examination, with EEG performed
338	to support the diagnosis and aid in syndromal subclassification and prognostication [73].
339	However, up to ~50% of individuals who present with a seizure will have a normal inter-ictal
340	EEG (which does not exclude the diagnosis of epilepsy) and in others the EEG may be
341	abnormal yet non-diagnostic [74-75]. In these individuals, if the history is not clearly
342	diagnostic of IGE then measurement of LICF and SICILICI may be a useful diagnostic
343	adjunct.
344	
345	In conclusion, we investigated the relationship between pre-synaptic disinhibition and post-
346	synaptic inhibition in the motor cortex of treated and untreated IGE, and find that, during the
347	period of post-synaptic inhibition, activation of GABA _A Rs may have excitatory effects. The
348	findings lend in vivo support to a growing body of evidence from experimental models and in
349	vitro studies of human epileptic brain tissue that GABA may have an excitatory role in
350	epilepsy. Coupled with alterations in disinhibition, the present findings point to a complex
351	modulation of pre- and post-synaptic GABAergic mechanisms in epilepsy.
352	
353	Acknowledgements: We thank Dr Philip Tuch (Neurologist) for his assistance in patient
354	recruitment, and the patients and Control subjects who participated in the study. Financial
355	support for the study was provided by the Neuromuscular Foundation of Western Australia.
356	

356 Figure Legends:

357	Figure 1: Protocol diagram	TOP: LICI/LICF curves	were generated from	n paired-pulse TMS,
-----	----------------------------	-----------------------	---------------------	---------------------

- 358 made up of a supra-threshold PS followed by TS (1mV MEP) delivered 100-350ms later.
- 359 This curve was used to identify the timing of strongest LICI () and LICF() for each
- 360 individual. BOTTOM: Paired- and triple-pulse TMS was used to measure LICI, LICF, and
- 361 SICI during both LICI and LICF. LICI/LICF was calculated at each ISI from the amplitude
- 362 ratio of primed-to-unprimed TS. Unprimed SICI was calculated from the amplitude ratio of
- 363 unconditioned-to-conditioned TS at ISI 2ms. At the two post-PS intervals corresponding to
- LICI and LICF, TS intensity was adjusted to restore MEP amplitude to 1mV (TS*) in the
- 365 presence of PS and SICI was then measured by delivering a CS prior to TS*.

366

367 Figure 2: LICI/LICF curves: Mean paired-pulse (PS-TS) MEP amplitudes at each ISI,

368 expressed as a percentage of single-pulse baseline. Error bars represent standard error. (A)

369 All subject groups; (B) Subjects in AED_{ON} only, according to specific AEDs.

370

Figure 3: SICI curves: Mean conditioned MEP amplitudes expressed as a percentage of

372 unconditioned amplitudes. Values <100% indicate inhibition (0% corresponds to complete

373 suppression of MEPs), and values >100% indicate a facilitatory response. Error bars

374 represent standard error.

375

Figure 4: MEP waveforms (overlay of 3) from a representative IGE patient (Subject 1,

377 AED_{NO}). Without the priming stimulus (top row), conditioned MEP amplitude (CS-TS) is

- 378 reduced compared to unconditioned (TS) amplitude. Measurements made after a PS (during
- 379 LICI) show the conditioned MEP amplitude to be greater than for the unconditioned MEP.

381 **Tables:**

Patient	Gender	Age	AED	Months on current AED [#]	Epilepsy Syndrome	Inter-ictal EEG	Months since last seizure
AED_{NO}							
1*	F	16	-		IGETCS	GSW	3
2*	М	22	-		JME	GSW	0.3
3	F	19	-		IGETCS	GSW	9
4*	М	35	-		JAE	GSW	1
5*	М	22	-		IGETCS	GSW	27
6	F	26	-		JME	GSW, PPR	0.25
7	F	37	-		IGETCS	GSW	14
AED _{ON}							
1*	F	17	LTG	3	IGETCS	GSW	7
2*	М	22	VPA	0.5	JME	GSW	1
4*	М	36	VPA	8	JAE	GSW	6
5*	М	21	LTG	17	IGETCS	GSW	24
8	М	18	VPA	10	IGETCS	GSW	5
9	F	18	LTG	8	JAE	GSW	36
10	F	18	LTG	10	JAE	GSW	6

Table 1: Demographics of patients with idiopathic generalised epilepsy

383 *GSW:* sporadic generalised spike and wave pattern, *IGETCS:* idiopathic generalised epilepsy

384 with tonic-clonic seizures, JAE: juvenile absence epilepsy, LTG: lamotrigine, PPR:

385 photoparoxysmal response, VPA: sodium valproate.

386 * indicates subject tested both on and off AEDs

[#] 'current AED' refers to both medication and dosage

388

389 Table 2: LICI, LICF and SICI in subjects tested both on and off AED treatment

	LICI		LICF		Unprimed SICI		SICILICI		SICILICF	
Patient	Off	On	Off	On	Off	On	Off	On	Off	On
1	53%	90%	148%	116%	35%	7%	-15%	12%	25%	13%
2	51%	63%	157%	118%	70%	88%	30%	18%	36%	65%
4	3%	12%	117%	75%	46%	41%	-28%	4%	35%	17%
5	1%	4%	65%	63%	44%	73%	-60%	#	43%	-4%

390 LICI values correspond to ISI 100ms, and LICF values correspond to each subject's peak

391 ISIs (as described under *Methods*). All SICI values are averaged across CS 0.7-0.9RMT.

[#] unable to measure SICI_{LICI} as maximum stimulator output reached

303	
393	Reference List
305	Reference List
396	[1] Engelborghs S D'Hooge R and De Devn P.P. Pathonhysiology of englepsy $Acta$
397	Neurol Rela 2000: 100 :201-213
398	[2] McCormick D A and Contreras D On the cellular and network bases of enileptic
399	seizures Annu Rev Physiol 2001: 63:815-846
400	[3] Casillas-Espinosa PM Powell K L and O'Brien T L Regulators of synaptic
400	transmission: roles in the pathogenesis and treatment of enilensy. <i>Enilensia</i> 2012: 53 Sunn
402	9.41 -58
403	[4] Avoli M and de Curtis M GABAergic synchronization in the limbic system and its
404	role in the generation of epileptiform activity. <i>Prog Neurobiol</i> 2011: 95 :104-132
405	[5] Nicoll R A My close encounter with GABA(B) recentors <i>Biochem Pharmacol</i> 2004:
406	68 ·1667-1674
407	[6] Mann E O and Paulsen O Role of GABAergic inhibition in hippocampal network
408	oscillations. <i>Trends Neurosci</i> 2007: 30 :343-349.
409	[7] Connors, B.W., Malenka, R.C. and Silva, L.R. Two inhibitory postsynaptic potentials.
410	and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat. J Physiol
411	1988: 406 :443-468.
412	[8] Davies, C.H., Davies, S.N. and Collingridge, G.L. Paired-pulse depression of
413	monosynaptic GABA-mediated inhibitory postsynaptic responses in rat hippocampus. J
414	Physiol 1990; 424 :513-531.
415	[9] McCormick, D.A. GABA as an inhibitory neurotransmitter in human cerebral cortex.
416	J Neurophysiol 1989; 62 :1018-1027.
417	[10] Deisz, R.A. GABA(B) receptor-mediated effects in human and rat neocortical
418	neurones in vitro. Neuropharmacology 1999; 38:1755-1766.
419	[11] Luscher, C., Jan, L.Y., Stoffel, M., Malenka, R.C. and Nicoll, R.A. G protein-coupled
420	inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic
421	transmitter actions in hippocampal neurons. Neuron 1997; 19:687-695.
422	[12] Kujirai, T., Caramia, M.D., Rothwell, J.C., Day, B.L., Thompson, P.D., Ferbert, A.,
423	Wroe, S., Asselman, P. and Marsden, C.D. Corticocortical inhibition in human motor cortex.
424	J Physiol 1993; 471 :501-519.
425	[13] Ziemann, U., Lonnecker, S., Steinhoff, B.J. and Paulus, W. The effect of lorazepam
426	on the motor cortical excitability in man. Exp Brain Res 1996; 109:127-135.
427	[14] McDonnell, M.N., Orekhov, Y. and Ziemann, U. The role of GABA(B) receptors in
428	intracortical inhibition in the human motor cortex. Exp Brain Res 2006; 173:86-93.
429	[15] Valls-Sole, J., Pascual-Leone, A., Wassermann, E.M. and Hallett, M. Human motor
430	evoked responses to paired transcranial magnetic stimuli. Electroencephalogr Clin
431	Neurophysiol 1992; 85 :355-364.
432	[16] Nakamura, H., Kitagawa, H., Kawaguchi, Y. and Tsuji, H. Intracortical facilitation
433	and inhibition after transcranial magnetic stimulation in conscious humans. J Physiol 1997;
434	498 (Pt 3):817-823.
435	[17] Chu, J., Gunraj, C. and Chen, R. Possible differences between the time courses of
436	presynaptic and postsynaptic GABAB mediated inhibition in the human motor cortex. <i>Exp</i>
437	Brain Res 2008; 184 :571-577.
438	[18] Sanger, T.D., Garg, R.R. and Chen, R. Interactions between two different inhibitory
439	systems in the human motor cortex. <i>J Physiol</i> 2001; 530 :307-317.
440	[19] Cash, R.F., Ziemann, U., Murray, K. and Thickbroom, G.W. Late cortical
441	disinhibition in human motor cortex: a triple-pulse transcranial magnetic stimulation study. J

442 *Neurophysiol* 2010; **103**:511-518.

443	[20] Brown, J.T., Davies, C.H. and Randall, A.D. Synaptic activation of GABA(B)
444	receptors regulates neuronal network activity and entrainment. Eur J Neurosci 2007;
445	25 :2982-2990.
446	[21] Badawy, R.A., Macdonell, R.A., Jackson, G.D. and Berkovic, S.F. Why do seizures in
447	generalized epilepsy often occur in the morning? <i>Neurology</i> 2009; 73:218-222.
448	[22] Badawy, R.A., Macdonell, R.A., Berkovic, S.F., Newton, M.R. and Jackson, G.D.
449	Predicting seizure control: cortical excitability and antiepileptic medication. Ann Neurol
450	2010; 67 :64-73.
451	[23] Badawy, R.A., Vogrin, S.J., Lai, A. and Cook, M.J. Patterns of cortical
452	hyperexcitability in adolescent/adult-onset generalized epilepsies. Epilepsia 2013; 54:871-
453	878.
454	[24] Badawy, R.A., Jackson, G.D., Berkovic, S.F. and Macdonell, R.A. Cortical
455	excitability and refractory epilepsy: a three-year longitudinal transcranial magnetic
456	stimulation study. Int J Neural Syst 2013; 23:1250030.
457	[25] Klimpe, S., Behrang-Nia, M., Bott, M.C. and Werhahn, K.J. Recruitment of motor
458	cortex inhibition differentiates between generalized and focal epilepsy. <i>Epilepsy Res</i> 2009;
459	84 :210-216.
460	[26] Pfutze, M., Reis, J., Haag, A., John, D., Hattemer, K., Oertel, W.H., Rosenow, F. and
461	Hamer, H.M. Lack of differences of motorcortical excitability in the morning as compared to
462	the evening in juvenile myoclonic epilepsya study using transcranial magnetic stimulation.
463	<i>Epilepsy Res</i> 2007; 74 :239-242.
464	[27] Manganotti, P., Bongiovanni, L.G., Fuggetta, G., Zanette, G. and Fiaschi, A. Effects
465	of sleep deprivation on cortical excitability in patients affected by juvenile myoclonic
466	epilepsy: a combined transcranial magnetic stimulation and EEG study. J Neurol Neurosurg
467	<i>Psychiatry</i> 2006; 77 :56-60.
468	[28] Manganotti, P., Bongiovanni, L.G., Zanette, G. and Fiaschi, A. Early and late
469	intracortical inhibition in juvenile myoclonic epilepsy. <i>Epilepsia</i> 2000; 41 :1129-1138.
470	[29] Teichgraber, L.A., Lehmann, T.N., Meencke, H.J., Weiss, T., Nitsch, R. and Deisz,
471	R.A. Impaired function of GABA(B) receptors in tissues from pharmacoresistant epilepsy
472	patients. Epilepsia 2009; 50:1697-1716.
473	[30] Ben-Ari, Y. Excitatory actions of gaba during development: the nature of the nurture.
474	Nat Rev Neurosci 2002; 3:728-739.
475	[31] Ben-Ari, Y. and Holmes, G.L. The multiple facets of gamma-aminobutyric acid
476	dysfunction in epilepsy. Curr Opin Neurol 2005; 18:141-145.
477	[32] Cossart, R., Bernard, C. and Ben-Ari, Y. Multiple facets of GABAergic neurons and
478	synapses: multiple fates of GABA signalling in epilepsies. Trends Neurosci 2005; 28:108-
479	115.
480	[33] Mathews, G.C. The dual roles of GABA in seizures and epilepsy generate more
481	excitement. Epilepsy Curr 2007; 7:28-30.
482	[34] Rothwell, J.C., Hallett, M., Berardelli, A., Eisen, A., Rossini, P. and Paulus, W.
483	Magnetic stimulation: motor evoked potentials. The International Federation of Clinical
484	Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 1999; 52:97-103.
485	[35] Rossi, S., Hallett, M., Rossini, P.M. and Pascual-Leone, A. Safety, ethical
486	considerations, and application guidelines for the use of transcranial magnetic stimulation in
487	clinical practice and research. <i>Clin Neurophysiol</i> 2009; 120 :2008-2039.
488	[36] Peurala, S.H., Muller-Dahlhaus, J.F., Arai, N. and Ziemann, U. Interference of short-
489	interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF). Clin
490	Neurophysiol 2008; 119:2291-2297.
491	[37] De Deyn, P.P., Marescau, B. and MacDonald, R.L. Epilepsy and the GABA-
492	hypothesis a brief review and some examples. Acta Neurol Belg 1990; 90:65-81.

493	[38] Deeb, T.Z., Maguire, J. and Moss, S.J. Possible alterations in GABAA receptor
494	signaling that underlie benzodiazepine-resistant seizures. <i>Epilepsia</i> 2012; 53 Suppl 9 :79-88.
495	[39] Kahle, K.T. and Staley, K. Altered neuronal chloride homeostasis and excitatory
496	GABAergic signaling in human temporal lobe epilepsy. <i>Epilepsy Curr</i> 2008; 8 :51-53.
497	[40] Loscher, W., Puskarjov, M. and Kaila, K. Cation-chloride cotransporters NKCC1 and
498	KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments.
499	Neuropharmacology 2013; 69:62-74.
500	[41] Blaesse, P., Airaksinen, M.S., Rivera, C. and Kaila, K. Cation-chloride cotransporters
501	and neuronal function. <i>Neuron</i> 2009; 61 :820-838.
502	[42] Ben-Ari, Y., Cherubini, E., Corradetti, R. and Gaiarsa, J.L. Giant synaptic potentials
503	in immature rat CA3 hippocampal neurones. <i>J Physiol</i> 1989; 416 :303-325.
504	[43] Fukuda, A., Muramatsu, K., Okabe, A., Shimano, Y., Hida, H., Fujimoto, I. and
505	Nishino, H. Changes in intracellular Ca2+ induced by GABAA receptor activation and
506	reduction in Cl- gradient in neonatal rat neocortex. J Neurophysiol 1998; 79:439-446.
507	[44] Yamada, J., Okabe, A., Toyoda, H., Kilb, W., Luhmann, H.J. and Fukuda, A. Cl-
508	uptake promoting depolarizing GABA actions in immature rat neocortical neurones is
509	mediated by NKCC1. J Physiol 2004; 557:829-841.
510	[45] Achilles, K., Okabe, A., Ikeda, M., Shimizu-Okabe, C., Yamada, J., Fukuda, A.,
511	Luhmann, H.J. and Kilb, W. Kinetic properties of Cl uptake mediated by Na+-dependent K+-
512	2Cl cotransport in immature rat neocortical neurons. J Neurosci 2007; 27:8616-8627.
513	[46] Owens, D.F., Boyce, L.H., Davis, M.B. and Kriegstein, A.R. Excitatory GABA
514	responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-
515	patch recordings and calcium imaging. J Neurosci 1996; 16:6414-6423.
516	[47] Dzhala, V.I., Talos, D.M., Sdrulla, D.A., Brumback, A.C., Mathews, G.C., Benke,
517	T.A., Delpire, E., Jensen, F.E. and Staley, K.J. NKCC1 transporter facilitates seizures in the
518	developing brain. <i>Nat Med</i> 2005; 11 :1205-1213.
519	[48] Kahle, K.T. and Staley, K.J. The bumetanide-sensitive Na-K-2Cl cotransporter
520	NKCC1 as a potential target of a novel mechanism-based treatment strategy for neonatal
521	seizures. Neurosurg Focus 2008; 25:E22.
522	[49] Deisz, R.A., Lehmann, T.N., Horn, P., Dehnicke, C. and Nitsch, R. Components of
523	neuronal chloride transport in rat and human neocortex. <i>J Physiol</i> 2011; 589 :1317-1347.
524	[50] Cohen, I., Navarro, V., Clemenceau, S., Baulac, M. and Miles, R. On the origin of
525	interictal activity in human temporal lobe epilepsy in vitro. <i>Science</i> 2002; 298 :1418-1421.
526	[51] Huberfeld, G., Wittner, L., Clemenceau, S., Baulac, M., Kaila, K., Miles, R. and
527	Rivera, C. Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe
528	epilepsy. J Neurosci 2007; 27:9866-9873.
529	[52] Munoz, A., Mendez, P., DeFelipe, J. and Alvarez-Leefmans, F.J. Cation-chloride
530	cotransporters and GABA-ergic innervation in the human epileptic hippocampus. <i>Epilepsia</i>
531	2007; 48:663-673.
532	[53] Palma, E., Amici, M., Sobrero, F., Spinelli, G., Di Angelantonio, S., Ragozzino, D.,
533	Mascia, A., Scoppetta, C., Esposito, V., Miledi, R. and Eusebi, F. Anomalous levels of Cl-
534	transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA
535	excitatory. Proc Natl Acad Sci U S A 2006; 103 :8465-8468.
536	[54] Conti, L., Palma, E., Roseti, C., Lauro, C., Cipriani, R., de Groot, M., Aronica, E. and
53/	Limatola, C. Anomalous levels of CI- transporters cause a decrease of GABAergic inhibition
538	in numan peritumoral epileptic cortex. <i>Epilepsia</i> 2011; 52 :1635-1644.
539	[55] Haug, K., Warnstedt, M., Alekov, A.K., Sander, T., Ramirez, A., Poser, B., Maljevic,
540 541	S., Hebeisen, S., Kubisch, U., Kebstock, J., Horvath, S., Hallmann, K., Dullinger, J.S., Rau,
541 542	D., naverkamp, F., Beyenburg, S., Schulz, H., Janz, D., Glese, B., Muller-Newen, G., Dronning D. Elgen C.E. Echlico C. Loroho II. and Heile A. Mutations in CLON2 areading

542 Propping, P., Elger, C.E., Fahlke, C., Lerche, H. and Heils, A. Mutations in CLCN2 encoding

543	a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nat
544	<i>Genet</i> 2003; 33 :527-532.
545	[56] Haug, K., Warnstedt, M., Alekov, A.K., Sander, T., Ramirez, A., Poser, B., Maljevic,
546	S., Hebeisen, S., Kubisch, C., Rebstock, J., Horvath, S., Hallmann, K., Dullinger, J.S., Rau,
547	B., Haverkamp, F., Beyenburg, S., Schulz, H., Janz, D., Giese, B., Muller-Newen, G.,
548	Propping, P., Elger, C.E., Fahlke, C. and Lerche, H. Retraction: Mutations in CLCN2
549	encoding a voltage-gated chloride channel are associated with idiopathic generalized
550	epilepsies. Nat Genet 2009; 41 :1043.
551	[57] Saint-Martin, C., Gauvain, G., Teodorescu, G., Gourfinkel-An, I., Fedirko, E., Weber,
552	Y.G., Maljevic, S., Ernst, J.P., Garcia-Olivares, J., Fahlke, C., Nabbout, R., LeGuern, E.,
553	Lerche, H., Poncer, J.C. and Depienne, C. Two novel CLCN2 mutations accelerating chloride
554	channel deactivation are associated with idiopathic generalized epilepsy. Hum Mutat 2009;
555	30 :397-405.
556	[58] Kang, Y., Kaneko, T., Ohishi, H., Endo, K. and Araki, T. Spatiotemporally
557	differential inhibition of pyramidal cells in the cat motor cortex. J Neurophysiol 1994;
558	71:280-293.
559	[59] Crunelli, V. and Leresche, N. A role for GABAB receptors in excitation and
560	inhibition of thalamocortical cells. Trends Neurosci 1991; 14:16-21.
561	[60] Staley, K.J. and Proctor, W.R. Modulation of mammalian dendritic GABA(A)
562	receptor function by the kinetics of Cl- and HCO3- transport. J Physiol 1999; 519 (Pt 3):693-
563	712.
564	[61] Staley, K.J., Soldo, B.L. and Proctor, W.R. Ionic mechanisms of neuronal excitation
565	by inhibitory GABAA receptors. Science 1995; 269:977-981.
566	[62] Thompson, S.M. and Gahwiler, B.H. Activity-dependent disinhibition. II. Effects of
567	extracellular potassium, furosemide, and membrane potential on ECI- in hippocampal CA3
568	neurons. J Neurophysiol 1989; 61:512-523.
569	[63] Thompson, S.M. and Gahwiler, B.H. Activity-dependent disinhibition. I. Repetitive
570	stimulation reduces IPSP driving force and conductance in the hippocampus in vitro. J
571	Neurophysiol 1989; 61:501-511.
572	[64] Brown, J.T., Gill, C.H., Farmer, C.E., Lanneau, C., Randall, A.D., Pangalos, M.N.,
573	Collingridge, G.L. and Davies, C.H. Mechanisms contributing to the exacerbated
574	epileptiform activity in hippocampal slices of GABAB1 receptor subunit knockout mice.
575	<i>Epilepsy Res</i> 2003; 57 :121-136.
576	[65] Kantrowitz, J.T., Francis, N.N., Salah, A. and Perkins, K.L. Synaptic depolarizing
577	GABA Response in adults is excitatory and proconvulsive when GABAB receptors are
578	blocked. J Neurophysiol 2005; 93:2656-2667.
579	[66] Thuault, S.J., Brown, J.T., Calver, A.R., Collingridge, G.L., Randall, A. and Davies,
580	C.H. Mechanisms contributing to the exacerbated epileptiform activity in hippocampal slices
581	expressing a C-terminal truncated GABA(B2) receptor subunit. <i>Epilepsy Res</i> 2005; 65:41-51.
582	[67] Frohlich, F., Bazhenov, M., Iragui-Madoz, V. and Sejnowski, T.J. Potassium
583	dynamics in the epileptic cortex: new insights on an old topic. <i>Neuroscientist</i> 2008; 14:422-
584	433.
585	[68] Fujiwara-Tsukamoto, Y., Isomura, Y., Imanishi, M., Fukai, T. and Takada, M.
586	Distinct types of ionic modulation of GABA actions in pyramidal cells and interneurons
587	during electrical induction of hippocampal seizure-like network activity. Eur J Neurosci
588	2007; 25 :2713-2725.
589	[69] Lillis, K.P., Kramer, M.A., Mertz, J., Staley, K.J. and White, J.A. Pyramidal cells
590	accumulate chloride at seizure onset. Neurobiol Dis 2012; 47:358-366.

Page 21 of 27

- 591 [70] Fedi, M., Berkovic, S.F., Macdonell, R.A., Curatolo, J.M., Marini, C. and Reutens, 592 D.C. Intracortical hyperexcitability in humans with a GABAA receptor mutation. Cereb 593 Cortex 2008; 18:664-669. 594 [71] Badawy, R.A., Curatolo, J.M., Newton, M., Berkovic, S.F. and Macdonell, R.A. 595 Changes in cortical excitability differentiate generalized and focal epilepsy. Ann Neurol 596 2007; 61:324-331. 597 Badawy, R.A., Macdonell, R.A., Jackson, G.D. and Berkovic, S.F. Can changes in [72] 598 cortical excitability distinguish progressive from juvenile myoclonic epilepsy? Epilepsia 599 2010; 51:2084-2088. 600 [73] Koutroumanidis, M., Bourvari, G. and Tan, S.V. Idiopathic generalized epilepsies: 601 clinical and electroencephalogram diagnosis and treatment. *Expert Rev Neurother* 2005; 602 **5**:753-767. 603 [74] Krumholz, A., Wiebe, S., Gronseth, G., Shinnar, S., Levisohn, P., Ting, T., Hopp, J., 604 Shafer, P., Morris, H., Seiden, L., Barkley, G. and French, J. Practice Parameter: evaluating 605 an apparent unprovoked first seizure in adults (an evidence-based review): report of the
- 606 Quality Standards Subcommittee of the American Academy of Neurology and the American
- 607 Epilepsy Society. *Neurology* 2007; **69**:1996-2007.
- 608 [75] Smith, S.J. EEG in the diagnosis, classification, and management of patients with
- 609 epilepsy. J Neurol Neurosurg Psychiatry 2005; 76 Suppl 2:ii2-7.
- 610
- 611

612 **Tables:**

Patient	Gender	Age	AED	Months on current AED [#]	Epilepsy Syndrome	Inter-ictal EEG	Months since last seizure
AED_{NO}							
1*	F	16	-		IGETCS	GSW	3
2*	М	22	-		JME	GSW	0.3
3	F	19	-		IGETCS	GSW	9
4*	М	35	-		JAE	GSW	1
5*	М	22	-		IGETCS	GSW	27
6	F	26	-		JME	GSW, PPR	0.25
7	F	37	-		IGETCS	GSW	14
AED _{ON}							
1*	F	17	LTG	3	IGETCS	GSW	7
2*	М	22	VPA	0.5	JME	GSW	1
4*	М	36	VPA	8	JAE	GSW	6
5*	М	21	LTG	17	IGETCS	GSW	24
8	М	18	VPA	10	IGETCS	GSW	5
9	F	18	LTG	8	JAE	GSW	36
10	F	18	LTG	10	JAE	GSW	6

613 **Table 1: Demographics of patients with idiopathic generalised epilepsy**

614 *GSW:* sporadic generalised spike and wave pattern, *IGETCS:* idiopathic generalised epilepsy

615 with tonic-clonic seizures, JAE: juvenile absence epilepsy, LTG: lamotrigine, PPR:

616 photoparoxysmal response, VPA: sodium valproate.

617 * indicates subject tested both on and off AEDs

618 [#] 'current AED' refers to both medication and dosage

619

620 Table 2: LICI, LICF and SICI in subjects tested both on and off AED treatment

	LICI		LICF		Unprimed SICI		SICILICI		SICILICF	
Patient	Off	On	Off	On	Off	On	Off	On	Off	On
1	53%	90%	148%	116%	35%	7%	-15%	12%	25%	13%
2	51%	63%	157%	118%	70%	88%	30%	18%	36%	65%
4	3%	12%	117%	75%	46%	41%	-28%	4%	35%	17%
5	1%	4%	65%	63%	44%	73%	-60%	#	43%	-4%

621 LICI values correspond to ISI 100ms, and LICF values correspond to each subject's peak

622 ISIs (as described under *Methods*). All SICI values are averaged across CS 0.7-0.9RMT.

[#] unable to measure SICI_{LICI} as maximum stimulator output reached

Page 24 of 27

