168 research outputs found

    Active surveillance inclusion criteria under scrutiny in magnetic resonance imaging-guided prostate biopsy : a multicenter cohort study

    Get PDF
    Background Although multiparametric magnetic resonance imaging (mpMRI) is recommended for primary risk stratification and follow-up in Active Surveillance (AS), it is not part of common AS inclusion criteria. The objective was to compare AS eligibility by systematic biopsy (SB) and combined MRI-targeted (MRI-TB) and SB within real-world data using current AS guidelines. Methods A retrospective multicenter study was conducted by a German prostate cancer (PCa) working group representing six tertiary referral centers and one outpatient practice. Men with PCa and at least one MRI-visible lesion according to Prostate Imaging Reporting and Data System (PI-RADS) v2 were included. Twenty different AS inclusion criteria of international guidelines were applied to calculate AS eligibility using either a SB or a combined MRI-TB and SB. Reasons for AS exclusion were assessed. Results Of 1941 patients with PCa, per guideline, 583–1112 patients with PCa in both MRI-TB and SB were available for analysis. Using SB, a median of 22.1% (range 6.4–72.4%) were eligible for AS. Using the combined approach, a median of 15% (range 1.7–68.3%) were eligible for AS. Addition of MRI-TB led to a 32.1% reduction of suitable patients. Besides Gleason Score upgrading, the maximum number of positive cores were the most frequent exclusion criterion. Variability in MRI and biopsy protocols potentially limit the results. Conclusions Only a moderate number of patients with PCa can be monitored by AS to defer active treatment using current guidelines for inclusion in a real-world setting. By an additional MRI-TB, this number is markedly reduced. These results underline the need for a contemporary adjustment of AS inclusion criteria

    The CBI-R detects early behavioural impairment in genetic frontotemporal dementia

    Get PDF
    Introduction: Behavioural dysfunction is a key feature of genetic frontotemporal dementia (FTD) but validated clinical scales measuring behaviour are lacking at present. Methods: We assessed behaviour using the revised version of the Cambridge Behavioural Inventory (CBI-R) in 733 participants from the Genetic FTD Initiative study: 466 mutation carriers (195 C9orf72, 76 MAPT, 195 GRN) and 267 non-mutation carriers (controls). All mutation carriers were stratified according to their global CDR plus NACC FTLD score into three groups: asymptomatic (CDR = 0), prodromal (CDR = 0.5) and symptomatic (CDR = 1+). Mixed-effects models adjusted for age, education, sex and family clustering were used to compare between the groups. Neuroanatomical correlates of the individual domains were assessed within each genetic group. Results: CBI-R total scores were significantly higher in all CDR 1+ mutation carrier groups compared with controls [C9orf72 mean 70.5 (standard deviation 27.8), GRN 56.2 (33.5), MAPT 62.1 (36.9)] as well as their respective CDR 0.5 groups [C9orf72 13.5 (14.4), GRN 13.3 (13.5), MAPT 9.4 (10.4)] and CDR 0 groups [C9orf72 6.0 (7.9), GRN 3.6 (6.0), MAPT 8.5 (13.3)]. The C9orf72 and GRN 0.5 groups scored significantly higher than the controls. The greatest impairment was seen in the Motivation domain for the C9orf72 and GRN symptomatic groups, whilst in the symptomatic MAPTgroup, the highest-scoring domains were Stereotypic and Motor Behaviours and Memory and Orientation. Neural correlates of each CBI-R domain largely overlapped across the different mutation carrier groups. Conclusions: The CBI-R detects early behavioural change in genetic FTD, suggesting that it could be a useful measure within future clinical trials

    Prodromal language impairment in genetic frontotemporal dementia within the GENFI cohort

    Get PDF
    Objective: To identify whether language impairment exists presymptomatically in genetic frontotemporal de-mentia (FTD), and if so, the key differences between the main genetic mutation groups. Methods: 682 participants from the international multicentre Genetic FTD Initiative (GENFI) study were recruited: 290 asymptomatic and 82 prodromal mutation carriers (with C9orf72, GRN, and MAPT mutations) as well as 310 mutation-negative controls. Language was assessed using items from the Progressive Aphasia Severity Scale, as well as the Boston Naming Test (BNT), modified Camel and Cactus Test (mCCT) and a category fluency task. Participants also underwent a 3 T volumetric T1-weighted MRI from which regional brain volumes within the language network were derived and compared between the groups. Results: 3% of asymptomatic (4% C9orf72, 4% GRN, 2% MAPT) and 48% of prodromal (46% C9orf72, 42% GRN, 64% MAPT) mutation carriers had impairment in at least one language symptom compared with 13% of controls. In prodromal mutation carriers significantly impaired word retrieval was seen in all three genetic groups whilst significantly impaired grammar/syntax and decreased fluency was seen only in C9orf72 and GRN mutation carriers, and impaired articulation only in the C9orf72 group. Prodromal MAPT mutation carriers had significant impairment on the category fluency task and the BNT whilst prodromal C9orf72 mutation carriers were impaired on the category fluency task only. Atrophy in the dominant perisylvian language regions differed between groups, with earlier, more widespread volume loss in C9orf72, and later focal atrophy in the temporal lobe in MAPT mutation carriers. Conclusions: Language deficits exist in the prodromal but not asymptomatic stages of genetic FTD across all three genetic groups. Improved understanding of the language phenotype prior to phenoconversion to fully symp-tomatic FTD will help develop outcome measures for future presymptomatic trials

    Social cognition impairment in genetic frontotemporal dementia within the GENFI cohort.

    Get PDF
    A key symptom of frontotemporal dementia (FTD) is difficulty interacting socially with others. Social cognition problems in FTD include impaired emotion processing and theory of mind difficulties, and whilst these have been studied extensively in sporadic FTD, few studies have investigated them in familial FTD. Facial Emotion Recognition (FER) and Faux Pas (FP) recognition tests were used to study social cognition within the Genetic Frontotemporal Dementia Initiative (GENFI), a large familial FTD cohort of C9orf72, GRN, and MAPT mutation carriers. 627 participants undertook at least one of the tasks, and were separated into mutation-negative healthy controls, presymptomatic mutation carriers (split into early and late groups) and symptomatic mutation carriers. Groups were compared using a linear regression model with bootstrapping, adjusting for age, sex, education, and for the FP recognition test, language. Neural correlates of social cognition deficits were explored using a voxel-based morphometry (VBM) study. All three of the symptomatic genetic groups were impaired on both tasks with no significant difference between them. However, prior to onset, only the late presymptomatic C9orf72 mutation carriers on the FER test were impaired compared to the control group, with a subanalysis showing differences particularly in fear and sadness. The VBM analysis revealed that impaired social cognition was mainly associated with a left hemisphere predominant network of regions involving particularly the striatum, orbitofrontal cortex and insula, and to a lesser extent the inferomedial temporal lobe and other areas of the frontal lobe. In conclusion, theory of mind and emotion processing abilities are impaired in familial FTD, with early changes occurring prior to symptom onset in C9orf72 presymptomatic mutation carriers. Future work should investigate how performance changes over time, in order to gain a clearer insight into social cognitive impairment over the course of the disease

    Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study

    Get PDF
    Back ground Neurofilament light chain (NfL) is a promising blood biomarker in genetic frontotemporal dementia, with elevated concentrations in symptomatic carriers of mutations in GRN, C9orf72, and MAPT. A better understanding of NfL dynamics is essential for upcoming therapeutic trials. We aimed to study longitudinal NfL trajectories in people with presymptomatic and symptomatic genetic frontotemporal dementia. Methods We recruited participants from 14 centres collaborating in the Genetic Frontotemporal Dementia Initiative (GENFI), which is a multicentre cohort study of families with genetic frontotemporal dementia done across Europe and Canada. Eligible participants (aged >= 18 years) either had frontotemporal dementia due to a pathogenic mutation in GRN, C9orf72, or MAPT (symptomatic mutation carriers) or were healthy at-risk first-degree relatives (either presymptomatic mutation carriers or non-carriers), and had at least two serum samples with a time interval of 6 months or more. Participants were excluded if they had neurological comorbidities that were likely to affect NfL, including cerebrovascular events. We measured NfL longitudinally in serum samples collected between june 8, 2012, and Dec 8, 2017, through follow-up visits annually or every 2 years, which also included MRI and neuropsychological assessments. Using mixed-effects models, we analysed Nil changes over time and correlated them with longitudinal imaging and clinical parameters, controlling for age, sex, and study site. The primary outcome was the course of NfL over time in the various stages of genetic frontotemporal dementia. Findings We included 59 symptomatic carriers and 149 presymptomatic carriers of a mutation in GRN, C9orf72, or MAPT, and 127 non-carriers. Nine presymptomatic carriers became symptomatic during follow-up (so-called converters). Baseline NfL was elevated in symptomatic carriers (median 52 pg/mL [IQR 24-69]) compared with presymptomatic carriers (9 pg/mL [6-13];p<0.0001) and non-carriers (8 pg/mL [6-11];p<0.0001), and was higher in converters than in non-converting carriers (19 pg/mL [17-28] vs 8 pg/mL [6-11];p=0.0007;adjusted for age). During follow-up, NfL increased in converters (b=0.097 [S E 0. 018];p<0.0001). In symptomatic mutation carriers overall, NfL did not change during follow-up (b=0.017 [SE 0.010];p=0.101) and remained elevated. Rates of NfL change over time were associated with rate of decline in Mini Mental State Examination (b=-94.7 [SE 33.9];p=0.003) and atrophy rate in several grey matter regions, but not with change in Frontotemporal Lobar Degeneration-Clinical Dementia Rating scale score (b=-3.46 [SE 46.3];p=0.941). Interpretation Our findings show the value of blood NfL as a disease progression biomarker in genetic frontotemporal dementia and suggest that longitudinal NfL measurements could identify mutation carriers approaching symptom onset and capture rates of brain atrophy. The characterisation of NfL over the course of disease provides valuable information for its use as a treatment effect marker. Copyright (C) 2019 Elsevier Ltd. All rights reserved

    Prodromal language impairment in genetic frontotemporal dementia within the GENFI cohort

    Get PDF
    Objective: To identify whether language impairment exists presymptomatically in genetic frontotemporal dementia (FTD), and if so, the key differences between the main genetic mutation groups. Methods: 682 participants from the international multicentre Genetic FTD Initiative (GENFI) study were recruited: 290 asymptomatic and 82 prodromal mutation carriers (with C9orf72, GRN, and MAPT mutations) as well as 310 mutation-negative controls. Language was assessed using items from the Progressive Aphasia Severity Scale, as well as the Boston Naming Test (BNT), modified Camel and Cactus Test (mCCT) and a category fluency task. Participants also underwent a 3 T volumetric T1-weighted MRI from which regional brain volumes within the language network were derived and compared between the groups. Results: 3% of asymptomatic (4% C9orf72, 4% GRN, 2% MAPT) and 48% of prodromal (46% C9orf72, 42% GRN, 64% MAPT) mutation carriers had impairment in at least one language symptom compared with 13% of controls. In prodromal mutation carriers significantly impaired word retrieval was seen in all three genetic groups whilst significantly impaired grammar/syntax and decreased fluency was seen only in C9orf72 and GRN mutation carriers, and impaired articulation only in the C9orf72 group. Prodromal MAPT mutation carriers had significant impairment on the category fluency task and the BNT whilst prodromal C9orf72 mutation carriers were impaired on the category fluency task only. Atrophy in the dominant perisylvian language regions differed between groups, with earlier, more widespread volume loss in C9orf72, and later focal atrophy in the temporal lobe in MAPT mutation carriers. Conclusions: Language deficits exist in the prodromal but not asymptomatic stages of genetic FTD across all three genetic groups. Improved understanding of the language phenotype prior to phenoconversion to fully symptomatic FTD will help develop outcome measures for future presymptomatic trials

    Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease

    Get PDF
    Defining a signature of cortical regions of interest preferentially affected by Alzheimer disease (AD) pathology may offer improved sensitivity to early AD compared to hippocampal volume or mesial temporal lobe alone. Since late-onset Alzheimer disease (LOAD) participants tend to have age-related comorbidities, the younger-onset age in autosomal dominant AD (ADAD) may provide a more idealized model of cortical thinning in AD. To test this, the goals of this study were to compare the degree of overlap between the ADAD and LOAD cortical thinning maps and to evaluate the ability of the ADAD cortical signature regions to predict early pathological changes in cognitively normal individuals. We defined and analyzed the LOAD cortical maps of cortical thickness in 588 participants from the Knight Alzheimer Disease Research Center (Knight ADRC) and the ADAD cortical maps in 269 participants from the Dominantly Inherited Alzheimer Network (DIAN) observational study. Both cohorts were divided into three groups: cognitively normal controls (nADRC = 381; nDIAN = 145), preclinical (nADRC = 153; nDIAN = 76), and cognitively impaired (nADRC = 54; nDIAN = 48). Both cohorts underwent clinical assessments, 3T MRI, and amyloid PET imaging with either 11C-Pittsburgh compound B or 18F-florbetapir. To generate cortical signature maps of cortical thickness, we performed a vertex-wise analysis between the cognitively normal controls and impaired groups within each cohort using six increasingly conservative statistical thresholds to determine significance. The optimal cortical map among the six statistical thresholds was determined from a receiver operating characteristic analysis testing the performance of each map in discriminating between the cognitively normal controls and preclinical groups. We then performed within-cohort and cross-cohort (e.g. ADAD maps evaluated in the Knight ADRC cohort) analyses to examine the sensitivity of the optimal cortical signature maps to the amyloid levels using only the cognitively normal individuals (cognitively normal controls and preclinical groups) in comparison to hippocampal volume. We found the optimal cortical signature maps were sensitive to early increases in amyloid for the asymptomatic individuals within their respective cohorts and were significant beyond the inclusion of hippocampus volume, but the cortical signature maps performed poorly when analyzing across cohorts. These results suggest the cortical signature maps are a useful MRI biomarker of early AD-related neurodegeneration in preclinical individuals and the pattern of decline differs between LOAD and ADAD.Fil: Dincer, Aylin. Washington University in St. Louis; Estados UnidosFil: Gordon, Brian A.. Washington University in St. Louis; Estados UnidosFil: Hari-Raj, Amrita. Ohio State University; Estados UnidosFil: Keefe, Sarah J.. Washington University in St. Louis; Estados UnidosFil: Flores, Shaney. Washington University in St. Louis; Estados UnidosFil: McKay, Nicole S.. Washington University in St. Louis; Estados UnidosFil: Paulick, Angela M.. Washington University in St. Louis; Estados UnidosFil: Shady Lewis, Kristine E.. University of Kentucky; Estados UnidosFil: Feldman, Rebecca L.. Washington University in St. Louis; Estados UnidosFil: Hornbeck, Russ C.. Washington University in St. Louis; Estados UnidosFil: Allegri, Ricardo Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Ances, Beau M.. Washington University in St. Louis; Estados UnidosFil: Berman, Sarah B.. University of Pittsburgh; Estados UnidosFil: Brickman, Adam M.. Columbia University; Estados UnidosFil: Brooks, William S.. Neuroscience Research Australia; Australia. University of New South Wales; AustraliaFil: Cash, David M.. UCL Queen Square Institute of Neurology; Reino UnidoFil: Chhatwal, Jasmeer P.. Harvard Medical School; Estados UnidosFil: Farlow, Martin R.. Indiana University; Estados UnidosFil: Fougère, Christian la. German Center for Neurodegenerative Diseases; Alemania. University Hospital of Tübingen; AlemaniaFil: Fox, Nick C.. UCL Queen Square Institute of Neurology; Reino UnidoFil: Fulham, Michael J.. Royal Prince Alfred Hospital; Australia. University of Sydney; AustraliaFil: Jack, Clifford R.. Mayo Clinic; Estados UnidosFil: Joseph-Mathurin, Nelly. Washington University in St. Louis; Estados UnidosFil: Karch, Celeste M.. Washington University in St. Louis; Estados UnidosFil: Lee, Athene. University Brown; Estados UnidosFil: Levin, Johannes. German Center for Neurodegenerative Diseases; Alemania. Ludwig Maximilians Universitat; Alemania. Munich Cluster for Systems Neurology; AlemaniaFil: Masters, Colin L.. University of Melbourne; AustraliaFil: McDade, Eric M.. Washington University in St. Louis; Estados UnidosFil: Oh, Hwamee. University Brown; Estados UnidosFil: Perrin, Richard J.. Washington University in St. Louis; Estados Unido

    Analysis of brain atrophy and local gene expression in genetic frontotemporal dementia.

    Get PDF
    Frontotemporal dementia is a heterogeneous neurodegenerative disorder characterized by neuronal loss in the frontal and temporal lobes. Despite progress in understanding which genes are associated with the aetiology of frontotemporal dementia, the biological basis of how mutations in these genes lead to cell loss in specific cortical regions remains unclear. In this work we combined gene expression data for 16,772 genes from the Allen Institute for Brain Science atlas with brain maps of gray matter atrophy in symptomatic C9orf72, GRN and MAPT mutation carriers obtained from the Genetic Frontotemporal dementia Initiative study. No significant association was seen between C9orf72, GRN and MAPT expression and the atrophy patterns in the respective genetic groups. After adjusting for spatial autocorrelation, between 1,000 and 5,000 genes showed a negative or positive association with the atrophy pattern within each individual genetic group, with the most significantly associated genes being TREM2, SSBP3 and GPR158 (negative association in C9orf72, GRN and MAPT respectively) and RELN, MXRA8 and LPA (positive association in C9orf72, GRN and MAPT respectively). An overrepresentation analysis identified a negative association with genes involved in mitochondrial function, and a positive association with genes involved in vascular and glial cell function in each of the genetic groups. A set of 423 and 700 genes showed significant positive and negative association, respectively, with atrophy patterns in all three maps. The gene set with increased expression in spared cortical regions was enriched for neuronal and microglial genes, while the gene set with increased expression in atrophied regions was enriched for astrocyte and endothelial cell genes. Our analysis suggests that these cell types may play a more active role in the onset of neurodegeneration in frontotemporal dementia than previously assumed, and in the case of the positively-associated cell marker genes, potentially through emergence of neurotoxic astrocytes and alteration in the blood-brain barrier respectively

    The Benson Complex Figure Test detects deficits in visuoconstruction and visual memory in symptomatic familial frontotemporal dementia: A GENFI study

    Get PDF
    Objective: Sensitive cognitive markers are still needed for frontotemporal dementia (FTD). The Benson Complex Figure Test (BCFT) is an interesting candidate test, as it assesses visuospatial, visual memory, and executive abilities, allowing the detection of multiple mechanisms of cognitive impairment. To investigate differences in BCFT Copy, Recall and Recognition in presymptomatic and symptomatic FTD mutation carriers, and to explore its cognitive and neuroimaging correlates.Method: We included cross-sectional data from 332 presymptomatic and 136 symptomatic mutation carriers (GRN, MAPT or C9orf72 mutations), and 290 controls in the GENFI consortium. We examined gene-specific differences between mutation carriers (stratified by CDR (R) NACC-FTLD score) and controls using Quade's / Pearson X2 tests. We investigated associations with neuropsychological test scores and grey matter volume using partial correlations and multiple regression models respectively.Results: No significant differences were found between groups at CDR (R) NACC-FTLD 0-0.5. Symptomatic GRN and C9orf72 mutation carriers had lower Copy scores at CDR (R) NACC-FTLD >= 2. All three groups had lower Recall scores at CDR (R) NACC-FTLD >= 2, with MAPT mutation carriers starting at CDR (R) NACC-FTLD >= 1. All three groups had lower Recognition scores at CDR (R) NACC FTLD >= 2. Performance correlated with tests for visuoconstruction, memory, and executive function. Copy scores correlated with frontal-subcortical grey matter atrophy, while Recall scores correlated with temporal lobe atrophy. Conclusions: In the symptomatic stage, the BCFT identifies differential mechanisms of cognitive impairment depending on the genetic mutation, corroborated by gene-specific cognitive and neuroimaging correlates. Our findings suggest that impaired performance on the BCFT occurs relatively late in the genetic FTD disease process. Therefore its potential as cognitive biomarker for upcoming clinical trials in presymptomatic to early-stage FTD is most likely limited
    corecore