6 research outputs found

    Cytotoxic effects of Mn(III) N-alkylpyridylporphyrins in the presence of cellular reductant, ascorbate

    No full text
    Due to the ability to easily accept and donate electrons Mn(III)N-alkylpyridylporphyrins (MnPs) can dismute O 2·-, reduce peroxynitrite, but also generate reactive species and behave as pro-oxidants if conditions favour such action. Herein two ortho isomers, MnTE-2-PyP 5+, MnTnHex-2-PyP 5+, and a meta isomer MnTnHex-3-PyP 5+, which differ greatly with regard to their metal-centered reduction potential, E 1/2 (Mn IIIP/Mn IIP) and lipophilicity, were explored. Employing Mn IIIP/Mn IIP redox system for coupling with ascorbate, these MnPs catalyze ascorbate oxidation and thus peroxide production. Consequently, cancer oxidative burden may be enhanced, which in turn would suppress its growth. Cytotoxic effects on Caco-2, Hela, 4T1, HCT116 and SUM149 were studied. When combined with ascorbate, MnPs killed cancer cells via peroxide produced outside of the cell. MnTE-2-PyP 5+ was the most efficacious catalyst for peroxide production, while MnTnHex-3-PyP 5+ is most prone to oxidative degradation with H 2 , and thus the least efficacious. A 4T1 breast cancer mouse study of limited scope and success was conducted. The tumour oxidative stress was enhanced and its microvessel density reduced when mice were treated either with ascorbate or MnP/ascorbate; the trend towards tumour growth suppression was detected. © 2011 Informa UK, Ltd

    Spectral imaging reveals microvessel physiology and function from anastomoses to thromboses

    No full text
    Abnormal microvascular physiology and function is common in many diseases. Numerous pathologies include hypervascularity, aberrant angiogenesis, or abnormal vascular remodeling among the characteristic features of the disease, and quantitative imaging and measurement of microvessel function can be important to increase understanding of these diseases. Several optical techniques are useful for direct imaging of microvascular function. Spectral imaging is one such technique that can be used to assess microvascular oxygen transport function with high spatial and temporal resolution in microvessel networks through measurements of hemoglobin saturation. We highlight novel observation made with our intravital microscopy spectral imaging system employed with mouse dorsal skin-fold window chambers for imaging hemoglobin saturation in microvessel networks. Specifically, we image acute oxygenation fluctuations in a tumor microvessel network, the development of arteriovenous malformations in a mouse model of hereditary hemorrhagic telangiectasia, and the formation of spontaneous and induced microvascular thromboses and occlusions

    ACE2 Activation Promotes Antithrombotic Activity

    No full text
    The aim of the present study was to test the hypothesis that the activation of the angiotensin-converting enzyme (ACE)2/angiotensin-(1-7)/Mas receptor axis by use of a novel ACE2 activator (XNT) would protect against thrombosis. Thrombi were induced in the vena cava of spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY) rats, and ACE2 and ACE activity in the thrombus was determined. Real-time thrombus formation was viewed through intravital microscopy of vessels in nude mice. Thrombus weight was 40% greater in the SHR (4.99 ± 0.39 versus 7.04 ± 0.66 mg). This weight increase was associated with a 20% decrease in ACE2 activity in the thrombus. In contrast, there were no differences between the WKY and SHR in ACE2 protein and ACE activity in the thrombi. ACE2 inhibition (DX600; 0.1 μmol/L/kg) increased thrombus weight by 30% and XNT treatment (10 mg/kg) resulted in a 30% attenuation of thrombus formation in the SHR. Moreover, XNT reduced platelet attachment to injured vessels, reduced thrombus size, and prolonged the time for complete vessel occlusion in mice. Thus, a decrease in thrombus ACE2 activity is associated with increased thrombus formation in SHR. Furthermore, ACE2 activation attenuates thrombus formation and reduces platelet attachment to vessels. These results suggest that ACE2 could be a novel target for the treatment of thrombogenic diseases
    corecore