11 research outputs found

    The CatWISE Preliminary Catalog: Motions from WISE and NEOWISE Data

    Get PDF
    CatWISE is a program to catalog sources selected from combined WISE and NEOWISE all-sky survey data at 3.4 and 4.6 μm (W1 and W2). The CatWISE Preliminary Catalog consists of 900,849,014 sources measured in data collected from 2010 to 2016. This data set represents four times as many exposures and spans over 10 times as large a time baseline as that used for the AllWISE Catalog. CatWISE adapts AllWISE software to measure the sources in coadded images created from six-month subsets of these data, each representing one coverage of the inertial sky, or epoch. The catalog includes the measured motion of sources in eight epochs over the 6.5 yr span of the data. From comparison to Spitzer, signal-to-noise ratio = 5 limits in magnitudes in the Vega system are W1 = 17.67 and W2 = 16.47, compared to W1 = 16.96 and W2 = 16.02 for AllWISE. From comparison to Gaia, CatWISE positions have typical accuracies of 50 mas for stars at W1 = 10 mag and 275 mas for stars at W1 = 15.5 mag. Proper motions have typical accuracies of 10 mas yr⁻¹ and 30 mas yr⁻¹ for stars with these brightnesses, an order of magnitude better than from AllWISE. The catalog is available in the WISE/NEOWISE Enhanced and Contributed Products area of the NASA/IPAC Infrared Science Archive

    Graph-Based Comparison Of Iot And Android Malware

    No full text
    The growth in the number of android and Internet of Things (IoT) devices has witnessed a parallel increase in the number of malicious software (malware) that can run on both, affecting their ecosystems. Thus, it is essential to understand those malware towards their detection. In this work, we look into a comparative study of android and IoT malware through the lenses of graph measures: we construct abstract structures, using the control flow graph (CFG) to represent malware binaries. Using those structures, we conduct an in-depth analysis of malicious graphs extracted from the android and IoT malware. By reversing 2,874 and 201 malware binaries corresponding to the IoT and android platforms, respectively, extract their CFGs, and analyze them across both general characteristics, such as the number of nodes and edges, as well as graph algorithmic constructs, such as average shortest path, betweenness, closeness, density, etc. Using the CFG as an abstract structure, we emphasize various interesting findings, such as the prevalence of unreachable code in android malware, noted by the multiple components in their CFGs, the high density, strong closeness and betweenness, and larger number of nodes in the android malware, compared to the IoT malware, highlighting its higher order of complexity. We note that the number of edges in android malware is larger than that in IoT malware, highlighting a richer flow structure of those malware samples, despite their structural simplicity (number of nodes). We note that most of those graph-based properties can be used as discriminative features for classification

    Redder than Red: Discovery of an Exceptionally Red L/T Transition Dwarf

    No full text
    We present the discovery of CWISE J050626.96+073842.4 (CWISE J0506+0738), an L/T transition dwarf with extremely red near-infrared colors discovered through the Backyard Worlds: Planet 9 citizen science project. Photometry from UKIRT and CatWISE give a (J − K)MKO color of 2.97 ± 0.03 mag and a J MKO − W2 color of 4.93 ± 0.02 mag, making CWISE J0506+0738 the reddest known free-floating L/T dwarf in both colors. We confirm the extremely red nature of CWISE J0506+0738 using Keck/NIRES near-infrared spectroscopy and establish that it is a low-gravity, late-type L/T transition dwarf. The spectrum of CWISE J0506+0738 shows possible signatures of CH4 absorption in its atmosphere, suggesting a colder effective temperature than other known, young, red L dwarfs. We assign a preliminary spectral type for this source of L8γ-T0γ. We tentatively find that CWISE J0506+0738 is variable at 3-5 μm based on multiepoch WISE photometry. Proper motions derived from follow-up UKIRT observations combined with a radial velocity from our Keck/NIRES spectrum and a photometric distance estimate indicate a strong membership probability in the β Pic moving group. A future parallax measurement will help to establish a more definitive moving group membership for this unusual object
    corecore