6,920 research outputs found

    Multifacet holographic optical elements

    Get PDF
    New types of holographic optical elements, combining the flexibility of computer generated holograms with the large space bandwidth product and high diffraction efficiency of interferometrically recorded volume phase holograms, are demonstrated. The optical elements are recorded by subdividing a volume hologram film surface into numerous small areas (facets), each of which is individually exposed under computer control. Each facet is used to produce a portion of the desired final wavefront. Three different optical elements are demonstrated

    Electromagnetic interference aspects of integrating a UHF/VHF receiver onboard Mariner 5

    Get PDF
    Electromagnetic interference assessment in integration of Mariner 5 UHF/VHF receive

    An Inverse Scattering Transform for the Lattice Potential KdV Equation

    Full text link
    The lattice potential Korteweg-de Vries equation (LKdV) is a partial difference equation in two independent variables, which possesses many properties that are analogous to those of the celebrated Korteweg-de Vries equation. These include discrete soliton solutions, Backlund transformations and an associated linear problem, called a Lax pair, for which it provides the compatibility condition. In this paper, we solve the initial value problem for the LKdV equation through a discrete implementation of the inverse scattering transform method applied to the Lax pair. The initial value used for the LKdV equation is assumed to be real and decaying to zero as the absolute value of the discrete spatial variable approaches large values. An interesting feature of our approach is the solution of a discrete Gel'fand-Levitan equation. Moreover, we provide a complete characterization of reflectionless potentials and show that this leads to the Cauchy matrix form of N-soliton solutions

    Accuracy of the QUAD4 thick shell element

    Get PDF
    The accuracy of the relatively new QUAD4 thick shell element is assessed via comparison with a theoretical solution for thick homogeneous and honeycomb flat simply supported plates under the action of a uniform pressure load. The theoretical thick plate solution is based on the theory developed by Reissner and includes the effects of transverse shear flexibility which are not included in the thin plate solutions based on Kirchoff plate theory. In addition, the QUAD4 is assessed using a set of finite element test problems developed by the MacNeal-Schwendler Corp. (MSC). Comparison of the COSMIC QUAD4 element as well as those from MSC and Universal Analytics, Inc. (UAI) for these test problems is presented. The current COSMIC QUAD4 element is shown to have excellent comparison with both the theoretical solutions and also those from the two commercial versions of NASTRAN that it was compared to

    Elastic Radiation in a Half‐Space

    Full text link
    A Green's function for the elastic wave equation, which satisfies certain boundary conditions on the surface of a homogeneous half‐space, is derived by means of the Fourier transformation. This half‐space Green's function is then applied to the computation of radiative effects due to the earth's surface when a radiating source is located on or within that surface. The results obtained are to be taken as an extension of a previous and similar formulation for the infinite medium due to Case and Colwell.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70190/2/JMAPAQ-11-8-2546-1.pd

    Stochastic evolution of four species in cyclic competition

    Full text link
    We study the stochastic evolution of four species in cyclic competition in a well mixed environment. In systems composed of a finite number NN of particles these simple interaction rules result in a rich variety of extinction scenarios, from single species domination to coexistence between non-interacting species. Using exact results and numerical simulations we discuss the temporal evolution of the system for different values of NN, for different values of the reaction rates, as well as for different initial conditions. As expected, the stochastic evolution is found to closely follow the mean-field result for large NN, with notable deviations appearing in proximity of extinction events. Different ways of characterizing and predicting extinction events are discussed.Comment: 19 pages, 6 figures, submitted to J. Stat. Mec

    Dimensional renormalization: ladders to rainbows

    Get PDF
    Renormalization factors are most easily extracted by going to the massless limit of the quantum field theory and retaining only a single momentum scale. We derive factors and renormalized Green functions to all orders in perturbation theory for rainbow graphs and vertex (or scattering diagrams) at zero momentum transfer, in the context of dimensional renormalization, and we prove that the correct anomalous dimensions for those processes emerge in the limit D -> 4.Comment: RevTeX, no figure

    Statistics of Certain Models of Evolution

    Get PDF
    In a recent paper, Newman surveys the literature on power law spectra in evolution, self-organised criticality and presents a model of his own to arrive at a conclusion that self-organised criticality is not necessary for evolution. Not only did he miss a key model (Ecolab) that has a clear self-organised critical mechanism, but also Newman's model exhibits the same mechanism that gives rise to power law behaviour as does Ecolab. Newman's model is, in fact, a ``mean field'' approximation of a self-organised critical system. In this paper, I have also implemented Newman's model using the Ecolab software, removing the restriction that the number of species remains constant. It turns out that the requirement of constant species number is non-trivial, leading to a global coupling between species that is similar in effect to the species interactions seen in Ecolab. In fact, the model must self-organise to a state where the long time average of speciations balances that of the extinctions, otherwise the system either collapses or explodes. In view of this, Newman's model does not provide the hoped-for counter example to the presence of self-organised criticality in evolution, but does provide a simple, almost analytic model that can used to understand more intricate models such as Ecolab.Comment: accepted in Phys Rev E.; RevTeX; See http://parallel.hpc.unsw.edu.au/rks/ecolab.html for more informatio
    corecore