443 research outputs found
Design and construction of a pulsed TEA/CO₂ laser and its synchronous coupling to a ruby laser
A 3-metre pulsed TEA/CO₂ laser, producing 10.6 μm radiation, was constructed, and its output characteristics investigated. The laser was of the helical pin electrode configuration with nominal 1000-Ω resistors at the cathode, and thus operated in the TEM₀₀ mode. The front laser window was a plane germanium mirror with 65% reflectivity, while the back window was a spherical silicon mirror with a radius of curvature of 10 m and a reflectivity of 99.4%. Input energy was supplied by a 0-30 KV power supply utilizing a triggered .03 μF capacitor which provided the pulsing mechanism for the laser. Using a gas mixture of 88% He, 6% N₂, and 6% CO₂, the peak power at 30 KV was approximately 2.4 MW and the output energy more than .5 J, effecting an efficiency of almost 4%. An image converter streak camera and a giant pulse ruby laser were simultaneously synchronized to the TEA/CO₂ laser. The purpose of this synchronization was to provide a system which could later be used to investigate stimulated ruby laser light scattering in CO₂ laser-induced plasmas. Synchronization was achieved with the aid of streak photographs of the plasmas. Plasmas in air were easily obtained using germanium lenses of focal lengths of up to 18 cm. Preliminary measurements were also made on the streak camera photographs which showed that the CO₂ laser-induced plasma expanded toward the laser with a velocity on the order of 10⁶ cm sec⁻¹. Also, the size of the plasma was found to increase when the ruby laser was focused on the plasma and fired simultaneously with the TEA/CO₂ laser
Compton Scattered Transition Radiation from Very High Energy Particles
X-ray transition radiation can be used to measure the Lorentz factor of
relativistic particles. At energies approaching gamma = E/mc^2 = 10^5,
transition radiation detectors (TRDs) can be optimized by using thick (sim 5 -
10 mil) foils with large (5-10 mm) spacings. This implies X-ray energies >100
keV and the use of scintillators as the X-ray detectors. Compton scattering of
the X-rays out of the particle beam then becomes an important effect. We
discuss the design of very high energy detectors, the use of metal radiator
foils rather than the standard plastic foils, inorganic scintillators for
detecting Compton scattered transition radiation, and the application to the
ACCESS cosmic ray experiment.Comment: To be published, Astroparticle Physic
Analysis of Summer Thunderstorms in Central Alabama Using the NASA Land Information System
Forecasters have difficulty predicting "random" afternoon thunderstorms during the summer months. Differences in soil characteristics could be a contributing factor for storms. The NASA Land Information System (LIS) may assist forecasters in predicting summer convection by identifying boundaries in land characteristics. This project identified case dates during the summer of 2009 by analyzing synoptic weather maps, radar, and satellite data to look for weak atmospheric forcing and disorganized convective development. Boundaries in land characteristics that may have lead to convective initiation in central Alabama were then identified using LIS
Low Energy Gamma-Ray Emission from Galactic Black Holes
X-ray observations of Galactic black holes (GBHs) such as Cygnus X-1 have greatly advanced the understanding of these objects. However, the vast majority of the observations have been restricted to energies below ~200 keV. The Compton Gamma-Ray Observatory (CGRO) allowed for the first time simultaneous observations at energies from ~25 keV up to >1 GeV. In particular, the BATSE experiment aboard CGRO was able to monitor low-energy gamma-ray emission from Cygnus X-1, as well as other GBHs, nearly continuously over a nine year period. Using the Enhanced BATSE Occultation Package (EBOP), light curves and spectra in the energy range 25–2000 keV have been obtained for six GBHs. Based on the spectra when the GBHs were in a high gamma-ray flux state, it is suggested that at least two different classes of GBHs exist. The first is characterized by a Comptonization spectrum below ~200 keV followed by a soft power law excess as exhibited by Cygnus X-1, GRO J0422+32, GRO J1719−24, and GX 339-4. The second class is characterized by simple power law spectrum in the full 25–2000 keV range, with no evidence for a Comptonization component, as exhibited by GRO J1655−40 and GRS 1915+105.Gamma-ray observations can serve as an important diagnostic in studying the physical processes around GBHs. More sensitive observations in the future at energies >250 keV will help answer questions regarding issues such as the nonthermal electron distribution, state transitions, and the connection to jets
TETRA Observation of Gamma Rays at Ground Level Associated with Nearby Thunderstorms
Terrestrial Gamma ray Flashes (TGFs) -- very short, intense bursts of
electrons, positrons, and energetic photons originating from terrestrial
thunderstorms -- have been detected with satellite instruments. TETRA, an array
of NaI(Tl) scintillators at Louisiana State University, has now been used to
detect similar bursts of 50 keV to over 2 MeV gamma rays at ground level. After
2.6 years of observation, twenty-four events with durations 0.02- 4.2 msec have
been detected associated with nearby lightning, three of them coincident events
observed by detectors separated by ~1000 m. Nine of the events occurred within
6 msec and 3 miles of negative polarity cloud-to-ground lightning strokes with
measured currents in excess of 20 kA. The events reported here constitute the
first catalog of TGFs observed at ground level in close proximity to the
acceleration site.Comment: To be published in Journal of Geophysical Research: Space Phys. 118,
Assimilation of SMOS Retrieved Soil Moisture into the Land Information System
Soil moisture retrievals from the Soil Moisture and Ocean Salinity (SMOS) instrument are assimilated into the Noah land surface model (LSM) within the NASA Land Information System (LIS). Before assimilation, SMOS retrievals are bias-corrected to match the model climatological distribution using a Cumulative Distribution Function (CDF) matching approach. Data assimilation is done via the Ensemble Kalman Filter. The goal is to improve the representation of soil moisture within the LSM, and ultimately to improve numerical weather forecasts through better land surface initialization. We present a case study showing a large area of irrigation in the lower Mississippi River Valley, in an area with extensive rice agriculture. High soil moisture value in this region are observed by SMOS, but not captured in the forcing data. After assimilation, the model fields reflect the observed geographic patterns of soil moisture. Plans for a modeling experiment and operational use of the data are given. This work helps prepare for the assimilation of Soil Moisture Active/Passive (SMAP) retrievals in the near future
Forecasting Lake-Effect Precipitation in the Great Lakes Region Using NASA Enhanced-Satellite Data
Lake-effect precipitation is common in the Great Lakes region, particularly during the late fall and winter. The synoptic processes of lake-effect precipitation are well understood by operational forecasters, but individual forecast events still present a challenge. Locally run, high resolution models can assist the forecaster in identifying the onset and duration of precipitation, but model results are sensitive to initial conditions, particularly the assumed surface temperature of the Great Lakes. The NASA Short-term Prediction Research and Transition (SPoRT) Center has created a Great Lakes Surface Temperature (GLST) composite, which uses infrared estimates of water temperatures obtained from the MODIS instrument aboard the Aqua and Terra satellites, other coarser resolution infrared data when MODIS is not available, and ice cover maps produced by the NOAA Great Lakes Environmental Research Lab (GLERL). This product has been implemented into the Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS), used within forecast offices to run local, high resolution forecasts. The sensitivity of the model forecast to the GLST product was analyzed with a case study of the Lake Effect Storm Echinacea, which produced 10 to 12 inches of snowfall downwind of Lake Erie, and 8 to 18 inches downwind of Lake Ontario from 27-29 January 2010. This research compares a forecast using the default Great Lakes surface temperatures from the Real Time Global sea surface temperature (RTG SST), in the WRF-EMS model to the enhanced NASA SPoRT GLST product to study forecast impacts. Results from this case study show that the SPoRT GLST contained less ice cover over Lake Erie and generally cooler water temperatures over Lakes Erie and Ontario. Latent and sensible heat fluxes over Lake Ontario were decreased in the GLST product. The GLST product decreased the quantitative precipitation forecast (QPF), which can be correlated to the decrease in temperatures and heat fluxes. A slight increase in precipitation coverage was noted over Lake Erie due to a decrease in ice cover. Both the RTG SST and the GLST products predicted the precipitation south of the actual location of precipitation. This single case study is the first part of an examination to determine how MODIS data can be applied to improve model forecasts in the Great Lakes region
Forecasting Lake-Effect Snow in the Great Lakes Using NASA Satllite Data
This slide presentation reviews the forecast of the lake effect snow in the Great Lakes region using models and infrared estimates of Great Lake Surface Temperatures (GLSTs) from the MModerate Resolution Imaging Spectroradiometer (MODIS) instrument on Terra and Aqua satellites, and other satellite data. This study analyzes Lake Erie and Lake Ontario which produce storm total snowfall ranged from 8-18 inches off of Lake Ontario and 10-12 inches off of Lake Erie for the areas downwind
- …