92 research outputs found

    CHARACTERISTICS OF SANDHILL CRANE ROOSTS IN THE SACRAMENTO-SAN JOAQUIN DELTA OF CALIFORNIA

    Get PDF
    The Sacramento-San Joaquin Delta (Delta) region of California is an important wintering region for 2 subspecies of Pacific Flyway sandhill cranes (Grus canadensis): the Central Valley Population of the greater sandhill crane (G. c. tabida) and the Pacific Flyway Population of the lesser sandhill crane (G. c. canadensis). During the winters of 2007-08 and 2008-09 we conducted roost counts, roadside surveys, aerial surveys, and tracked radio-marked birds to locate and assess important habitats for roosting cranes in the Delta. Of the 69 crane night roosts we identified, 35 were flooded cropland sites and 34 were wetland sites. We found that both larger individual roost sites and larger complexes of roost sites supported larger peak numbers of cranes. Water depth used by roosting cranes averaged 10 cm (range 3-21 cm, mode 7 cm) and was similar between subspecies. We found that cranes avoided sites that were regularly hunted or had high densities of hunting blinds. We suggest that managers could decide on the size of roost sites to provide for a given crane population objective using a ratio of 1.5 cranes/ha. The fact that cranes readily use undisturbed flooded cropland sites makes this a viable option for creation of roost habitat. Because hunting disturbance can limit crane use of roost sites we suggest these 2 uses should not be considered readily compatible. However, if the management objective of an area includes waterfowl hunting, limiting hunting to low blind densities and restricting hunting to early morning may be viable options for creating a crane-compatible waterfowl hunt program

    Waterfowl endozoochory: an overlooked long-distance dispersal mode for Cuscuta (dodder, Convolvulaceae)

    Get PDF
    PREMISE OF THE STUDY: Dispersal of parasitic Cuscuta species (dodders) worldwide has been assumed to be largely anthropomorphic because their seeds do not match any previously known dispersal syndrome and no natural dispersal vectors have been reliably documented. However, the genus has a subcosmopolitan distribution and recent phylogeographic results have indicated that at least18 historical cases of long-distance dispersal (LDD) have occurred during its evolution. The objective of this study is to report the first LDD biological vector for Cuscuta seeds. METHODS: Twelve northern pintails (Anas acuta) were collected from Suisun Marsh, California and the contents of their lowest part of the large intestine (rectum) were extracted and analyzed. Seed identification was done both morphologically and using a molecular approach. Extracted seeds were tested for germination and compared to seeds not subjected to gut passage to determine the extent of structural changes caused to the seed coat by passing through the digestive tract. KEY RESULTS: Four hundred and twenty dodder seeds were found in the rectum of four northern pintails. From these, 411 seeds were identified as Cuscuta campestris and nine as most likely C. pacifica. The germination rate of C. campestris seeds after gut passage was 55%. Structural changes caused by the gut passage in both species were similar to those caused by an acid scarification. CONCLUSIONS: Endozoochory by waterbirds may explain the historical LDD cases in the evolution of Cuscuta. This also suggests that current border quarantine measures may be insufficient to stopping spreading of dodder pests along migratory flywaysPeer reviewe

    Pinyon and Juniper Encroachment into Sagebrush Ecosystems Impacts Distribution and Survival of Greater Sage-Grouse

    Get PDF
    AbstractIn sagebrush (Artemisia spp.) ecosystems, encroachment of pinyon (Pinus spp.) and juniper (Juniperus spp.; hereafter, “pinyon-juniper”) trees has increased dramatically since European settlement. Understanding the impacts of this encroachment on behavioral decisions, distributions, and population dynamics of greater sage-grouse (Centrocercus urophasianus) and other sagebrush obligate species could help benefit sagebrush ecosystem management actions. We employed a novel two-stage Bayesian model that linked avoidance across different levels of pinyon-juniper cover to sage-grouse survival. Our analysis relied on extensive telemetry data collected across 6 yr and seven subpopulations within the Bi-State Distinct Population Segment (DPS), on the border of Nevada and California. The first model stage indicated avoidance behavior for all canopy cover classes on average, but individual grouse exhibited a high degree of heterogeneity in avoidance behavior of the lowest cover class (e.g., scattered isolated trees). The second stage modeled survival as a function of estimated avoidance parameters and indicated increased survival rates for individuals that exhibited avoidance of the lowest cover class. A post hoc frailty analysis revealed the greatest increase in hazard (i.e., mortality risk) occurred in areas with scattered isolated trees consisting of relatively high primary plant productivity. Collectively, these results provide clear evidence that local sage-grouse distributions and demographic rates are influenced by pinyon-juniper, especially in habitats with higher primary productivity but relatively low and seemingly benign tree cover. Such areas may function as ecological traps that convey attractive resources but adversely affect population vital rates. To increase sage-grouse survival, our model predictions support reducing actual pinyon-juniper cover as low as 1.5%, which is lower than the published target of 4.0%. These results may represent effects of pinyon-juniper cover in areas with similar ecological conditions to those of the Bi-State DPS, where populations occur at relatively high elevations and pinyon-juniper is abundant and widespread

    Good prospects: high-resolution telemetry data suggests novel brood site selection behaviour in waterfowl

    Get PDF
    Breeding success should increase with prior knowledge of the surrounding environment, which is dependent upon an animal\u27s ability to evaluate habitat. Prospecting for nesting locations and migratory stopover sites are well-established behaviours among bird species. We assessed whether three species of California dabbling ducks – mallards, Anas platyrhynchos, gadwall, Mareca strepera, and cinnamon teal, Spatula cyanoptera – in Suisun Marsh, California, U.S.A., a brackish marsh, prospect for suitable wetlands in the week prior to brooding. K-means cluster analyses grouped 29 mallard and gadwall hens into three groups. One group (N = 13) demonstrated evidence of brood site prospecting, with the fewest and latest prebrooding wetland visits. Of these hens, seven visited their future brood pond an average of 1.14 times and only shortly before brooding (1.29 days), obtaining current information on habitat suitability. For the remaining six hens, we did not detect a brooding wetland visit, possibly due to data limitations or because these hens acquired sufficient familiarity with the wetland habitat during nest breaks in adjacent wetlands, obviating the need to prospect the specific brood pond. The second identified group of hens (N = 11) visited the brooding wetland most frequently (on 4.55 days), further in advance (5.27 days), with the fewest unique wetland visits and the earliest brooding date (26 May). The final group of hens (N = 5) were the latest to brood (21 June) and visited the most wetlands, possibly due to less water or more broods present across the landscape. Brood ponds were always farther from the nest than the nearest ponds, indicating that habitat suitability or presence of conspecifics is more important to brood site selection. Prospecting provides hens with knowledge about current habitat conditions and allows them to ‘crowdsource’ public information regarding use of that habitat by other brooding hens. Prospecting may, therefore, benefit ducks inhabiting ephemeral habitats like those within Suisun Marsh, where brood habitat is limited and water cover changes rapidly during the breeding season

    Pathways for avian influenza virus spread: GPS reveals wild waterfowl in commercial livestock facilities and connectivity with the natural wetland landscape

    Get PDF
    Zoonotic diseases are of considerable concern to the human population and viruses such as avian influenza (AIV) threaten food security, wildlife conservation and human health. Wild waterfowl and the natural wetlands they use are known AIV reservoirs, with birds capable of virus transmission to domestic poultry populations. While infection risk models have linked migration routes and AIV outbreaks, there is a limited understanding of wild waterfowl presence on commercial livestock facilities, and movement patterns linked to natural wetlands. We documented 11 wild waterfowl (three Anatidae species) in or near eight commercial livestock facilities in Washington and California with GPS telemetry data. Wild ducks used dairy and beef cattle feed lots and facility retention ponds during both day and night suggesting use for roosting and foraging. Two individuals (single locations) were observed inside poultry facility boundaries while using nearby wetlands. Ducks demonstrated high site fidelity, returning to the same areas of habitats (at livestock facilities and nearby wetlands), across months or years, showed strong connectivity with surrounding wetlands, and arrived from wetlands up to 1251 km away in the week prior. Telemetry data provides substantial advantages over observational data, allowing assessment of individual movement behaviour and wetland connectivity that has significant implications for outbreak management. Telemetry improves our understanding of risk factors for waterfowl–livestock virus transmission and helps identify factors associated with coincident space use at the wild waterfowl–domestic livestock interface. Our research suggests that even relatively small or isolated natural and artificial water or food sources in/near facilities increases the likelihood of attracting waterfowl, which has important consequences for managers attempting to minimize or prevent AIV outbreaks. Use and interpretation of telemetry data, especially in near-real-time, could provide key information for reducing virus transmission risk between waterfowl and livestock, improving protective barriers between wild and domestic species, and abating outbreaks

    Waterfowl recently infected with low pathogenic avian influenza exhibit reduced local movement and delayed migration

    Get PDF
    Understanding relationships between infection and wildlife movement patterns is important for predicting pathogen spread, especially for multispecies pathogens and those that can spread to humans and domestic animals, such as avian influenza viruses (AIVs). Although infection with low pathogenic AIVs is generally considered asymptomatic in wild birds, prior work has shown that influenza-infected birds occasionally delay migration and/or reduce local movements relative to their uninfected counterparts. However, most observational research to date has focused on a few species in northern Europe; given that influenza viruses are widespread globally and outbreaks of highly pathogenic strains are increasingly common, it is important to explore influenza–movement relationships across more species and regions. Here, we used telemetry data to investigate relationships between influenza infection and movement behavior in 165 individuals from four species of North American waterfowl that overwinter in California, USA. We studied both large-scale migratory and local overwintering movements and found that relationships between influenza infection and movement patterns varied among species. Northern pintails (Anas acuta) with antibodies to avian influenza, indicating prior infection, made migratory stopovers that averaged 12 days longer than those with no influenza antibodies. In contrast, greater white-fronted geese (Anser albifrons) with antibodies to avian influenza made migratory stopovers that averaged 15 days shorter than those with no antibodies. Canvasbacks (Aythya valisineria) that were actively infected with influenza upon capture in the winter delayed spring migration by an average of 28 days relative to birds that were uninfected at the time of capture. At the local scale, northern pintails and canvasbacks that were actively infected with influenza used areas that were 7.6 and 4.9 times smaller than those of uninfected ducks, respectively, during the period of presumed active influenza infection. We found no evidence for an influence of active influenza infection on local movements of mallards (Anas platyrhynchos). These results suggest that avian influenza can influence waterfowl movements and illustrate that the relationships between avian influenza infection and wild bird movements are context- and species-dependent. More generally, understanding and predicting the spread of multihost pathogens requires studying multiple taxa across space and time

    Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with cellular maturation

    Get PDF
    The role of CD4+ T cells in the control of persistent viral infections beyond the provision of cognate help remains unclear. We used polychromatic flow cytometry to evaluate the production of the cytokines interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and interleukin (IL)-2, the chemokine macrophage inflammatory protein (MIP)-1β, and surface mobilization of the degranulation marker CD107a by CD4+ T cells in response to stimulation with cytomegalovirus (CMV)-specific major histocompatibility complex class II peptide epitopes. Surface expression of CD45RO, CD27, and CD57 on responding cells was used to classify CD4+ T cell maturation. The functional profile of virus-specific CD4+ T cells in chronic CMV infection was unique compared with that observed in other viral infections. Salient features of this profile were: (a) the simultaneous production of MIP-1β, TNF-α, and IFN-γ in the absence of IL-2; and (b) direct cytolytic activity associated with surface mobilization of CD107a and intracellular expression of perforin and granzymes. This polyfunctional profile was associated with a terminally differentiated phenotype that was not characterized by a distinct clonotypic composition. Thus, mature CMV-specific CD4+ T cells exhibit distinct functional properties reminiscent of antiviral CD8+ T lymphocytes

    Acquisition of direct antiviral effector functions by CMV-specific CD4+T lymphocytes with cellular maturation

    Get PDF
    The role of CD4+ T cells in the control of persistent viral infections beyond the provision of cognate help remains unclear. We used polychromatic flow cytometry to evaluate the production of the cytokines interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and interleukin (IL)-2, the chemokine macrophage inflammatory protein (MIP)-1β, and surface mobilization of the degranulation marker CD107a by CD4+ T cells in response to stimulation with cytomegalovirus (CMV)-specific major histocompatibility complex class II peptide epitopes. Surface expression of CD45RO, CD27, and CD57 on responding cells was used to classify CD4+ T cell maturation. The functional profile of virus-specific CD4+ T cells in chronic CMV infection was unique compared with that observed in other viral infections. Salient features of this profile were: (a) the simultaneous production of MIP-1β, TNF-α, and IFN-γ in the absence of IL-2; and (b) direct cytolytic activity associated with surface mobilization of CD107a and intracellular expression of perforin and granzymes. This polyfunctional profile was associated with a terminally differentiated phenotype that was not characterized by a distinct clonotypic composition. Thus, mature CMV-specific CD4+ T cells exhibit distinct functional properties reminiscent of antiviral CD8+ T lymphocytes

    Application of B cell immortalization for the isolation of antibodies and B cell clones from vaccine and infection settings

    Get PDF
    The isolation and characterization of neutralizing antibodies from infection and vaccine settings informs future vaccine design, and methodologies that streamline the isolation of antibodies and the generation of B cell clones are of great interest. Retroviral transduction to express Bcl-6 and Bcl-xL and transform primary B cells has been shown to promote long-term B cell survival and antibody secretion in vitro, and can be used to isolate antibodies from memory B cells. However, application of this methodology to B cell subsets from different tissues and B cells from chronically infected individuals has not been well characterized. Here, we characterize Bcl-6/Bcl-xL B cell immortalization across multiple tissue types and B cell subsets in healthy and HIV-1 infected individuals, as well as individuals recovering from malaria. In healthy individuals, naïve and memory B cell subsets from PBMCs and tonsil tissue transformed with similar efficiencies, and displayed similar characteristics with respect to their longevity and immunoglobulin secretion. In HIV-1-viremic individuals or in individuals with recent malaria infections, the exhausted CD27-CD21- memory B cells transformed with lower efficiency, but the transformed B cells expanded and secreted IgG with similar efficiency. Importantly, we show that this methodology can be used to isolate broadly neutralizing antibodies from HIV-infected individuals. Overall, we demonstrate that Bcl-6/Bcl-xL B cell immortalization can be used to isolate antibodies and generate B cell clones from different B cell populations, albeit with varying efficiencies
    corecore