1,971 research outputs found

    Regular and Anomalous Quantum Diffusion in the Fibonacci Kicked Rotator

    Full text link
    We study the dynamics of a quantum rotator kicked according to the almost-periodic Fibonacci sequence. A special numerical technique allows us to carry on this investigation for as many as 101210^{12} kicks. It is shown that above a critical kick strength the excitation of the system is well described by regular diffusion, while below this border it becomes anomalous, and sub-diffusive. A law for the dependence of the exponent of anomalous sub-diffusion on the system parameters is established numerically. The analogy between these results and quantum diffusion in models of quasi-crystal and in the kicked Harper system is discussed.Comment: 7 pages, 4 figures, submitted to Phys. Rev.

    Anomalous diffusion and dynamical localization in a parabolic map

    Full text link
    We study numerically classical and quantum dynamics of a piecewise parabolic area preserving map on a cylinder which emerges from the bounce map of elongated triangular billiards. The classical map exhibits anomalous diffusion. Quantization of the same map results in a system with dynamical localization and pure point spectrum.Comment: 4 pages in RevTeX (4 ps-figures included

    Statistical properties of eigenvalues for an operating quantum computer with static imperfections

    Full text link
    We investigate the transition to quantum chaos, induced by static imperfections, for an operating quantum computer that simulates efficiently a dynamical quantum system, the sawtooth map. For the different dynamical regimes of the map, we discuss the quantum chaos border induced by static imperfections by analyzing the statistical properties of the quantum computer eigenvalues. For small imperfection strengths the level spacing statistics is close to the case of quasi-integrable systems while above the border it is described by the random matrix theory. We have found that the border drops exponentially with the number of qubits, both in the ergodic and quasi-integrable dynamical regimes of the map characterized by a complex phase space structure. On the contrary, the regime with integrable map dynamics remains more stable against static imperfections since in this case the border drops only algebraically with the number of qubits.Comment: 9 pages, 10 figure

    Quantum Resonances and Regularity Islands in Quantum Maps

    Full text link
    We study analytically as well as numerically the dynamics of a quantum map near a quantum resonance of an order q. The map is embedded into a continuous unitary transformation generated by a time-independent quasi-Hamiltonian. Such a Hamiltonian generates at the very point of the resonance a local gauge transformation described the unitary unimodular group SU(q). The resonant energy growth of is attributed to the zero Liouville eigenmodes of the generator in the adjoint representation of the group while the non-zero modes yield saturating with time contribution. In a vicinity of a given resonance, the quasi-Hamiltonian is then found in the form of power expansion with respect to the detuning from the resonance. The problem is related in this way to the motion along a circle in a (q^2-1)-component inhomogeneous "magnetic" field of a quantum particle with qq intrinsic degrees of freedom described by the SU(q) group. This motion is in parallel with the classical phase oscillations near a non-linear resonance. The most important role is played by the resonances with the orders much smaller than the typical localization length, q << l. Such resonances master for exponentially long though finite times the motion in some domains around them. Explicit analytical solution is possible for a few lowest and strongest resonances.Comment: 28 pages (LaTeX), 11 ps figures, submitted to PR

    Quantum Resonances of Kicked Rotor and SU(q) group

    Full text link
    The quantum kicked rotor (QKR) map is embedded into a continuous unitary transformation generated by a time-independent quasi-Hamiltonian. In some vicinity of a quantum resonance of order qq, we relate the problem to the {\it regular} motion along a circle in a (q21)(q^2-1)-component inhomogeneous "magnetic" field of a quantum particle with qq intrinsic degrees of freedom described by the SU(q)SU(q) group. This motion is in parallel with the classical phase oscillations near a non-linear resonance.Comment: RevTeX, 4 pages, 3 figure

    Parametric Evolution for a Deformed Cavity

    Full text link
    We consider a classically chaotic system that is described by a Hamiltonian H(Q,P;x), where (Q,P) describes a particle moving inside a cavity, and x controls a deformation of the boundary. The quantum-eigenstates of the system are |n(x)>. We describe how the parametric kernel P(n|m) = , also known as the local density of states, evolves as a function of x-x0. We illuminate the non-unitary nature of this parametric evolution, the emergence of non-perturbative features, the final non-universal saturation, and the limitations of random-wave considerations. The parametric evolution is demonstrated numerically for two distinct representative deformation processes.Comment: 13 pages, 8 figures, improved introduction, to be published in Phys. Rev.

    Comment on "Coherent Ratchets in Driven Bose-Einstein Condensates"

    Full text link
    C. E. Creffield and F. Sols (Phys. Rev. Lett. 103, 200601 (2009)) recently reported finite, directed time-averaged ratchet current, for a noninteracting quantum particle in a periodic potential even when time-reversal symmetry holds. As we explain in this Comment, this result is incorrect, that is, time-reversal symmetry implies a vanishing current.Comment: revised versio

    Heat conduction in one dimensional systems: Fourier law, chaos, and heat control

    Full text link
    In this paper we give a brief review of the relation between microscopic dynamical properties and the Fourier law of heat conduction as well as the connection between anomalous conduction and anomalous diffusion. We then discuss the possibility to control the heat flow.Comment: 15 pages, 11 figures. To be published in the Proceedings of the NATO Advanced Research Workshop on Nonlinear Dynamics and Fundamental Interactions, Tashkent, Uzbekistan, Octo. 11-16, 200

    Phase-space reconstruction of an atomic chaotic system

    Full text link
    We consider the dynamics of a single atom submitted to periodic pulses of a far-detuned standing wave generated by a high-finesse optical cavity, which is an atomic version of the well-known ``kicked rotor''. We show that the classical phase-space map can be ``reconstructed'' by monitoring the transmission of the cavity. We also studied the effect of spontaneous emission on the reconstruction, and put limits to the maximum acceptable spontaneous emission rate.Comment: 5 figures, submitted to PR
    corecore