9 research outputs found

    [pt] BIOFLOTAÇÃO DE MAGNESITA, CALCITA E BARITA USANDO RHODOCOCCUS OPACUS COMO BIORREAGENTE

    No full text
    A bactéria Rhodococcus opacus foi avaliada como biorreagente para a flotação dos minerais da magnesita calcita e barita. As análises para determinar a conformação de parede o R. opacus estabelecem que é constituída por macromoléculas com características anfipáticas. O balanço entre grupos catiônicos e aniônicos da parede atribui um ponto isoelétrico equivalente de 3,2. Os resultados dos testes de aderência indicam que a bactéria R. opacus tem uma forte afinidade por superfícies de características ácido - base. Medidas dos minerais antes e após da interação com o R. opacus revelaram que embora fossem observadas modificações sobre todas as superfícies dos minerais, a bactéria R. opacus apresentou uma melhor afinidade pela superfície da magnesita. A capacidade de adsorção das células sobre as superfícies foi fortemente dependente dos valores de pH e a velocidade de adsorção atingiu a máxima concentração de células nos primeiros 5 minutos. As isotermas para a adsorção da bactéria sobre os minerais poderiam ser categorizadas do tipo Lagmuir (L) , II. A melhor flotabilidade foi observada em pH 7. Para a magnesita, a porcentagem foi de 92% usando uma concentração de R. opacus de 100 ppm. Para calcita os melhores resultados apresentaram flotabilidade de 55% para uma concentração de 250 ppm. Em relação à barita, os melhores valores de flotabilidade (60%) foram obtidos para uma concentração de R. opacus de 350 ppm. A aproximação termodinâmica determinou que a energia de adesão era negativa para todos os sistemas, sugerindo assim uma adsorção espontânea da bactéria sobre as superfícies minerais. Para magnesita e calcita as teorias DLVO confirmam os resultados experimentais, as atrações eletrostáticas entre as partículas determinaram as forças de interação. Já para barita, a teoria de XDLVO poderia predizer o comportamento das células sobre o mineral. Neste caso as interações ácido-base seriam as responsáveis pela adesão.Rhodococcus opacus micro-organism was evaluated as a biocollector for flotation of calcite and magnesite and barite. Analyses of R. opacus cell wall indicated the macromolecules configurationl. The IEP value of R. opacus was around 3.2,. The acidic IEP value of R. opacus could be due to the presence of anionic groups on the wall that dominate over the cationic groups. The adherence test showed the R. opacus affinity for acid-base surfaces.The behavior of the minerals, before and after R. opacus interaction, was evaluated and showed that the cells adhesion shifted both the minerals zeta potential curves and the reversal charges in comparison to their original isoelectric points. Adhesion tests suggested a higher affinity of the bacteria for magnesite than calcite and barite. The experiments of the adsorption rate of the R. opacus on the minerals surfaces showed fast behavior, achieving a maximum of cell adsorption after 5 minutes. Adsorption isotherm curves for the minerals could be categorized as Lagmuir (L) type II. The best bioflotability results for the minerals were achieved for pH 7. Magnesite reached values around 93% for a R. opacus concentration of 100 ppm. For calcite the best flotability was of 55% for a R. opacus concentration of 220 ppm. For barite, the best flotability achieved 70% for a bacterial concentration of 350 ppm. Using the thermodynamic approach of the minerals systems, the adhesion energy of R. opacus on the surfaces was negative. The result suggested a spontaneous adsorption of R. opacus on to the all minerals. For magnesite and calcite, the DLVO theory can predict the cell behavior on the minerals surfaces. The electrostatic attractions determine the interaction forces. For barite and pH 7, the X- DLVO theory predicted the R. opacus adhesion on the surface by acid base interactions

    Effect of the tryptone concentration on the calcium carbonate biomineralization mediated by Bacillus cereus

    Get PDF
    Five tryptone concentrations (0.2%, 0.4%, 0.6%, 0.8% and 1.0%) were evaluated on calcium carbonate biomineralization processes, using 0.5% of calcium acetate. A culture of Bacillus cereus, isolated from the gardens of The Universidad Pontificia Bolivariana (Medellin, Antioquia, Colombia) was used in all the assays. The experiments were monitored by pH measurements and mineralogical analyses of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning electronic microscopy (SEM). Vaterite was the predominant polymorph in the precipitates after 6 days of the process. However, a considerable proportion of calcite appeared (above 30%) when the tryptone concentration was 0.4% or below. Additionally, the other experiments had a similar precipitate formation (between 3.2-3.6 g/L) except the assay using 0.2% of tryptone, which presented a low calcium carbonate production (1.79 g/L). A tryptone concentration below 0.4% would limit the bacterial metabolism and CO2 formation, necessary for calcium carbonate production

    Efecto del Tween ® 80 sobre la bioprecipitación de carbonato de calcio por Bacillus cereus

    No full text
    Abstract This research presents the sprinkling effect of Tween® 80 for three concentrations (0.00% w, 0.25% w y 0.50% w) in a processes of calcium carbonate biosynthesis. The assays used a culture of Bacillus cereus, isolated from the gardens of the Universidad Pontificia Bolivariana (Medellin, Colombia). The experiments were monitored for 6 days measuring pH as well as through mineralogical analyses for precipitates using scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. Tween® 80 had an important role as deagglomerate, decreasing the precipitation of biomineralized-carbonate structures (generated by bacteria). It was also found that the evaluated concentrations did not inhibit the bacterial growth. Additionally, Tween® 80 favored the production of vaterite, increasing its ratio in comparison to calcite (around 98% by using 0.50% w of Tween® 80).Resumen Se llevaron a cabo procesos de biosíntesis de carbonato de calcio, empleando una cepa de Bacillus cereus, aislada de los jardines de la Universidad Pontificia Bolivariana (Medellín, Colombia). Se evaluó el efecto disgregante del Tween® 80 a tres concentraciones: 0.00% p/v, 0.25% p/v y 0.50% p/v. Los experimentos se monitorizaron por 6 días con mediciones de pH y análisis mineralógicos a los precipitados finales por microscopía electrónica de barrido, difracción de rayos X y espectroscopia de infrarrojo con transformada de Fourier. El Tween® 80 tuvo un papel importante como desaglomerante de las estructuras de carbonato formadas por los microorganismos. Aunque los ensayos con el surfactante presentaron menor formación de precipitado, las concentraciones evaluadas no inhibieron el crecimiento bacteriano. Adicionalmente, este compuesto favoreció la formación de vaterita incrementando su proporción en comparación con la calcita (alrededor del 98%, utilizando Tween® 80 al 0.50% p/v)

    Efecto del Tween® 80 sobre la bioprecipitación de carbonato de calcio por Bacillus cereus

    No full text
    Se llevaron a cabo procesos de biosíntesis de carbonato de calcio, empleando una cepa de Bacillus cereus, aislada de los jardines de la Universidad Pontificia Bolivariana (Medellín, Colombia). Se evaluó el efecto disgregante del Tween® 80 a tres concentraciones: 0.00% p/v, 0.25% p/v y 0.50% p/v. Los experimentos se monitorizaron por 6 días con mediciones de pH y análisis mineralógicos a los precipitados finales por microscopía electrónica de barrido, difracción de rayos X y espectroscopia de infrarrojo con transformada de Fourier. El Tween® 80 tuvo un papel importante como desaglomerante de las estructuras de carbonato formadas por los microorganismos. Aunque los ensayos con el surfactante presentaron menor formación de precipitado, las concentraciones evaluadas no inhibieron el crecimiento bacteriano. Adicionalmente, este compuesto favoreció la formación de vaterita incrementando su proporción en comparación con la calcita (alrededor del 98%, utilizando Tween® 80 al 0.50% p/v)

    Efecto del Tween® 80 sobre la bioprecipitación de carbonato de calcio por Bacillus cereus

    Get PDF
    Se llevaron a cabo procesos de biosíntesis de carbonato de calcio, empleando una cepa de Bacillus cereus, aislada de los jardines de la Universidad Pontificia Bolivariana (Medellín, Colombia). Se evaluó el efecto disgregante del Tween® 80 a tres concentraciones: 0.00% p/v, 0.25% p/v y 0.50% p/v. Los experimentos se monitorizaron por 6 días con mediciones de pH y análisis mineralógicos a los precipitados finales por microscopía electrónica de barrido, difracción de rayos X y espectroscopia de infrarrojo con transformada de Fourier. El Tween® 80 tuvo un papel importante como desaglomerante de las estructuras de carbonato formadas por los microorganismos. Aunque los ensayos con el surfactante presentaron menor formación de precipitado, las concentraciones evaluadas no inhibieron el crecimiento bacteriano. Adicionalmente, este compuesto favoreció la formación de vaterita incrementando su proporción en comparación con la calcita (alrededor del 98%, utilizando Tween® 80 al 0.50% p/v).This research presents the sprinkling effect of Tween® 80 for three concentrations (0.00% w, 0.25% w y 0.50% w) in a processes of calcium carbonate biosynthesis. The assays used a culture of Bacillus cereus, isolated from the gardens of the Universidad Pontificia Bolivariana (Medellin, Colombia). The experiments were monitored for 6 days measuring pH as well as through mineralogical analyses for precipitates using scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. Tween® 80 had an important role as deagglomerate, decreasing the precipitation of biomineralized-carbonate structures (generated by bacteria). It was also found that the evaluated concentrations did not inhibit the bacterial growth. Additionally, Tween® 80 favored the production of vaterite, increasing its ratio in comparison to calcite (around 98% by using 0.50% w of Tween® 80)

    Nanotecnología y agroindustria: opciones de desarrollo

    No full text
    Las tecnologías disruptivas dan cuenta del poder que tiene la innovación para transformar las industrias, mejorar la calidad de vida y salvaguardar el planeta. Entre estas tecnologías, la nanotecnología está siendo aplicada en numerosos campos e impactando no solo distintas industrias sino también la vida cotidiana, al hacer cada vez más concreto el ideal de una materia programable, adaptativa y evolutiva, que será el recurso para el diseño y la implementación de soluciones a los grandes problemas que debe afrontar la sociedad del actual siglo. Nanotecnología: Fundamentos y aplicaciones: más que explicar contenidos teóricos, busca hacer posible que el lector se acerque al sentido del diseño y la manipulación de la materia a nivel de átomos o moléculas. A tal fin, la obra abarca un amplio haz de temas y variantes, como la obtención y la caracterización de nanomateriales; la aplicación en-áreas como el medio ambiente, la salud, la energética; la industria textil y la agroindustria; los aspectos fundamentales de regulación y normatividad, y los elementos y riesgos de salud ocupacional fue se deben considerar cuando se hace uso de esta tecnología, junto con consideraciones éticas. Esta obra está pensada tanto para académicos interesados o especializados en la materia (profesores, investigadores y estudiantes) como para industriales y personal del nivel técnico que se desempeñan en áreas de aplicación actual y futura de la nanotecnología.Fil: Zuluaga Gallego, Robin Octavio. Universidad Pontificia Bolivariana.; ColombiaFil: Velez Acosta, Lina María. Universidad Pontificia Bolivariana.; ColombiaFil: Castro Herezo, Cristina Isabes. Universidad Pontificia Bolivariana.; ColombiaFil: Casas Botero, Ana Elisa. Universidad Pontificia Bolivariana.; ColombiaFil: Velázquez Cock, Jorge. Universidad Pontificia Bolivariana.; ColombiaFil: Osorio Delgado, Marlon Andrés. Universidad Pontificia Bolivariana.; ColombiaFil: Torres Taborda, Mabel Milena. Universidad Pontificia Bolivariana.; ColombiaFil: Gañán Rojas, Piedad Felisinda. Universidad Pontificia Bolivariana.; ColombiaFil: Marín Pineda, Diana Marcela. Universidad Pontificia Bolivariana.; ColombiaFil: Stefani, Pablo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentin

    La nanocelulosa: Una estructura producida por la naturaleza

    No full text
    Las tecnologías disruptivas dan cuenta del poder que tiene la innovación para transformar las industrias, mejorar la calidad de vida y salvaguardar el planeta. Entre estas tecnologías, la nanotecnología está siendo aplicada en numerosos campos e impactando no solo distintas industrias sino también la vida cotidiana, al hacer cada vez más concreto el ideal de una materia programable, adaptativa y evolutiva, que será el recurso para el diseño y la implementación de soluciones a los grandes problemas que debe afrontar la sociedad del actual siglo. Nanotecnología: Fundamentos y aplicaciones, más que explicar contenidos teóricos, busca hacer posible que el lector se acerque al sentido del diseño y la manipulación de la materia a nivel de átomos o moléculas. A tal fin, la obra abarca un amplio haz de temas y variantes, como la obtención y la caracterización de nanomateriales; la aplicación en-áreas como el medio ambiente, la salud, la energética; la industria textil y la agroin- dustria; los aspectos fundamentales de regulación y normatividad, y los elementos y riesgos de salud ocupacional fue se deben considerar cuando se hace uso de esta tecnología, junto con consideraciones éticas. Esta obra está pensada tanto para académicos interesados o especializados en la materia (profesores, investigadores y estudiantes) como para industriales y personal del nivel técnico que se desempeñan en áreas de aplicación actual y futura de la nanotecnología.Fil: Zuluaga Gallego, Robin Octavio. Universidad Pontificia Bolivariana.; ColombiaFil: Serpa Guerra, Angélica María. Universidad Pontificia Bolivariana.; ColombiaFil: Velez Acosta, Lina María. Universidad Pontificia Bolivariana.; ColombiaFil: Gómez Hoyos, Catalina. Universidad Pontificia Bolivariana.; Colombia. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Construcciones y Estructuras. Laboratorio de Materiales y Estructuras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Castro Herazo, Cristina Isabel. Universidad Pontificia Bolivariana.; ColombiaFil: Casas Botero, Ana Elisa. Universidad Pontificia Bolivariana.; ColombiaFil: Osorio Delgado, Marlon Andrés. Universidad Pontificia Bolivariana.; ColombiaFil: Velázquez Cock, Jorge. Universidad Pontificia Bolivariana.; ColombiaFil: Torres Taborda, Mabel Milena. Universidad Pontificia Bolivariana.; ColombiaFil: Gañán Rojo, Piedad Felisinda. Universidad Pontificia Bolivariana.; ColombiaFil: Marin Quintero, Diana Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Stefani, Pablo Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentin
    corecore