795 research outputs found

    Are Self-regarding Subjects More Strategic?

    Get PDF
    To investigate the relationship between the depth of strategic thinking and social preferences we ask subjects in an experiment to perform dictator games and a guessing game. The guessing game measures depth of strategic thinking while dictator games control for social preferences. When performing a comparison within the same degree of strategic reasoning, self-regarding subjects show more strategic sophistication than other subjects.

    Sea Water Aging ofGlass Reinforced Composites:Shear Behaviour andDamage Modelling

    Get PDF
    International audienceThis paper presents results from a study of the wet aging of four thermoset resins and their [0°/90°] stitched glass fibre reinforced composites. The matrix resins are orthophthalic polyester, isophthalic polyester, vinyl ester and epoxy. Resins and composites were aged for 18 months, under three immersion conditions: 20°C sea water, 50°C sea water and 50°C distilled water. Tensile tests,on resins and at 45° to fibre direction of composites, both before and after aging enable the influence of matrix resin and aging medium on weight changes and matrix dominated property degradation to be evaluated. This has enabled a unique data set to be obtained. A large part of the shear property loss after aging is recovered after drying. An original application of damage mechanics parameters is used to quantify the changes in composite shear behaviour, in order to provide a more complete representation of the inelastic response

    First instar larva of Atractocerus brasiliensis (Lepeletier & Audinet-Serville, 1825) (Lymexylidae, Atractocerinae)

    Get PDF
    A larva de primeiro instar de Atractocerus brasiliensis (Lepetelier & Audinet-Serville, 1825) do estado de Goiás, Brasil, e criada em laboratório, é descrita e ilustrada. Esta é a segunda espécie com larva de primeiro instar conhecida para o gênero e a terceira para a família. Comparações com a larva madura dessa espécie e com as demais larvas de primeiro instar conhecidas são apresentadas. Ilustrações das larvas de primeiro instar e madura também são incluídas.The first instar larva of Atractocerus brasiliensis (Lepetelier & Audinet-Serville, 1825) from state of Goiás, Brazil, and reared in laboratory, is described and illustrated. This is the second species with known first instar larva for the genus and the third for the family. Comparisons with mature larva of this species and with the other known first instar larvae are presented. Illustrations of first instar and mature larvae are also included

    Bulk Cr tips for scanning tunneling microscopy and spin-polarized scanning tunneling microscopy

    Full text link
    A simple, reliable method for preparation of bulk Cr tips for Scanning Tunneling Microscopy (STM) is proposed and its potentialities in performing high-quality and high-resolution STM and Spin Polarized-STM (SP-STM) are investigated. Cr tips show atomic resolution on ordered surfaces. Contrary to what happens with conventional W tips, rest atoms of the Si(111)-7x7 reconstruction can be routinely observed, probably due to a different electronic structure of the tip apex. SP-STM measurements of the Cr(001) surface showing magnetic contrast are reported. Our results reveal that the peculiar properties of these tips can be suited in a number of STM experimental situations

    Pulsed Laser Deposition of two-dimensional ZnO nanocrystals on Au(111): Growth, surface structure and electronic properties

    Get PDF
    Two-dimensional (2D) ZnO structures have been deposited on the Au(111) surface by means of the pulsed laser deposition (PLD) technique. In situ scanning tunneling microscopy (STM) and spectroscopy (STS) measurements have been performed to characterize morphological, structural and electronic properties of 2D ZnO at the nanoscale. Starting from a sub-monolayer coverage, we investigated the growth of ZnO, identifying different atomic layers (up to the 5th). At low coverage, we observed single- and bi-layer nanocrystals, characterized by a surface moire pattern that is associated to a graphene-like ZnO structure. By increasing the coverage, we revealed a morphological change starting from the 4th layer, which was attributed to a transition toward a bulk-like structure. Investigation of the electronic properties revealed the semiconducting character of 2D ZnO. We observed a dependence of the density of states (DOS) and, in particular, of the conduction band (CB) on the ZnO thickness, with a decreasing of the CB onset energy for increasing thickness. The CB DOS of 2D ZnO shows a step-like behaviour which may be interpreted as due to a 2D quantum confinement effect in ZnO atomic layer

    Interface coupling in Au-supported MoS2–WS2 heterobilayers grown by pulsed laser deposition

    Get PDF
    Van der Waals heterostructures of transition metal dichalcogenides (TMDs) are promising systems for engineering functional layered 2D materials with tailored properties. In this work, we study the growth of WS2/MoS2 and MoS2/WS2 heterobilayers by pulsed laser deposition (PLD) under ultra-high vacuum conditions. Using Au(111) as growth substrate, we investigated the heterobilayer morphology and structure at the nanoscale by in-situ scanning tunneling microscopy. Our experiments show that the heterostructure growth can be controlled with high coverage and thickness sensitivity by tuning the number of laser pulses in the PLD process. Raman spectroscopy complemented our investigation, revealing the effect of the interaction with the metallic substrate on the TMD vibrational properties and a strong interlayer coupling between the MoS2 and WS2 layers. The transfer of the heterobilayers on a silica substrate via a wet etching process shows the possibility to decouple them from the native metallic substrate and confirms that the interlayer coupling is not substrate-dependent. This work highlights the potential of the PLD technique as a method to grow TMD heterostructures, opening to new perspectives in the synthesis of complex 2D layered materials

    Fabrication and Characterization of Molybdenum Tips for Scanning Tunneling Microscopy and Spectroscopy

    Get PDF
    We present a method for the preparation of bulk molybdenum tips for scanning Tunneling Microscopy and Spectroscopy (STM - STS) and we assess their potential in performing high resolution imaging and local spectroscop by measurements on different single crystal surfaces in UHV, namely Au(111), Si(111)-7x7 and titanium oxide 2D ordered nanostructures supported on Au(111). The fabrication method is versatile and can be extended to other metals, e.g. cobalt

    Generalization of particle impact behavior in gas turbine via non-dimensional grouping

    Get PDF
    Fouling in gas turbines is caused by airborne contaminants which, under certain conditions, adhere to aerodynamic surfaces upon impact. The growth of solid deposits causes geometric modifications of the blades in terms of both mean shape and roughness level. The consequences of particle deposition range from performance deterioration to life reduction to complete loss of power. Due to the importance of the phenomenon, several methods to model particle sticking have been proposed in literature. Most models are based on the idea of a sticking probability, defined as the likelihood a particle has to stick to a surface upon impact. Other models investigate the phenomenon from a deterministic point of view by calculating the energy available before and after the impact. The nature of the materials encountered within this environment does not lend itself to a very precise characterization, consequently, it is difficult to establish the limits of validity of sticking models based on field data or even laboratory scale experiments. As a result, predicting the growth of solid deposits in gas turbines is still a task fraught with difficulty. In this work, two nondimensional parameters are defined to describe the interaction between incident particles and a substrate, with particular reference to sticking behavior in a gas turbine. In the first part of the work, historical experimental data on particle adhesion under gas turbine-like conditions are analyzed by means of relevant dimensional quantities (e.g. particle viscosity, surface tension, and kinetic energy). After a dimensional analysis, the data then are classified using non-dimensional groups and a universal threshold for the transition from erosion to deposition and from fragmentation to splashing based on particle properties and impact conditions is identified. The relation between particle kinetic energy/surface energy and the particle temperature normalized by the softening temperature represents the original non-dimensional groups able to represent a basis of a promising adhesion criterion
    • …
    corecore