281 research outputs found
Influence of Peer Support on HIV/STI Prevention and Safety Amongst International Migrant Sex Workers: A Qualitative Study at the Mexico-Guatemala Border
Background
Migrant women engaged in precarious employment, such as sex work, frequently face pronounced social isolation alongside other barriers to health and human rights. Although peer support has been identified as a critical HIV and violence prevention intervention for sex workers, little is known about access to peer support or its role in shaping health and social outcomes for migrant sex workers. This article analyses the role of peer support in shaping vulnerability and resilience related to HIV/STI prevention and violence among international migrant sex workers at the Mexico-Guatemala border.
Methods
This qualitative study is based on 31 semi-structured interviews conducted with international migrant sex workers in the Mexico-Guatemala border communities of Tapachula, Mexico and Tecún Umán and Quetzaltenango, Guatemala.
Results
Peer support was found to be critical for reducing social isolation; improving access to HIV/STI knowledge, prevention and resources; and mitigating workplace violence, particularly at the initial stages of migration and sex work. Peer support was especially critical for countering social isolation, and peers represented a valuable source of HIV/STI prevention knowledge and resources (e.g., condoms), as well as essential safety supports in the workplace. However, challenges to accessing peer support were noted, including difficulties establishing long-lasting relationships and other forms of social participation due to frequent mobility, as well as tensions among peers within some work environments. Variations in access to peer support related to country of work, work environment, sex work and migration stage, and sex work experience were also identified.
Conclusions
Results indicate that peer-led and community empowerment interventions represent a promising strategy for promoting the health, safety and human rights of migrant sex workers. Tailored community empowerment interventions addressing the unique migration-related contexts and challenges faced by migrant sex workers should be a focus of future community-based research, alongside promotion of broader structural changes
Study of cosmogenic activation above ground for the DarkSide-20k experiment
The activation of materials due to exposure to cosmic rays may become an important background source for experiments investigating rare event phenomena. DarkSide-20k, currently under construction at the Laboratori Nazionali del Gran Sasso, is a direct detection experiment for galactic dark matter particles, using a two-phase liquid-argon Time Projection Chamber (TPC) filled with 49.7 tonnes (active mass) of Underground Argon (UAr) depleted in 39Ar. Despite the outstanding capability of discriminating
/
background in argon TPCs, this background must be considered because of induced dead time or accidental coincidences mimicking dark-matter signals and it is relevant for low-threshold electron-counting measurements. Here, the cosmogenic activity of relevant long-lived radioisotopes induced in the experiment has been estimated to set requirements and procedures during preparation of the experiment and to check that it is not dominant over primordial radioactivity; particular attention has been paid to the activation of the 120 t of UAr used in DarkSide-20k. Expected exposures above ground and production rates, either measured or calculated, have been considered in detail. From the simulated counting rates in the detector due to cosmogenic isotopes, it is concluded that activation in copper and stainless steel is not problematic. The activity of 39Ar induced during extraction, purification and transport on surface is evaluated to be 2.8% of the activity measured in UAr by DarkSide-50 experiment, which used the same underground source, and thus considered acceptable. Other isotopes in the UAr such as 37Ar and 3H are shown not to be relevant due to short half-life and assumed purification methods
Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel
Dark matter lighter than 10 GeV/c2 encompasses a promising range of candidates. A conceptual design for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light dark matter is explored for various potential energy thresholds and background rates. These studies show that DarkSide-LowMass can achieve sensitivity to light dark matter down to the solar neutrino fog for GeV-scale masses and significant sensitivity down to 10 MeV/c2 considering the Migdal effect or interactions with electrons. Requirements for optimizing the detector’s sensitivity are explored, as are potential sensitivity gains from modeling and mitigating spurious electron backgrounds that may dominate the signal at the lowest energies
Measurement of isotopic separation of argon with the prototype of the cryogenic distillation plant Aria for dark matter searches
The Aria cryogenic distillation plant, located in Sardinia, Italy, is a key component of the DarkSide-20k experimental program for WIMP dark matter searches at the INFN Laboratori Nazionali del Gran Sasso, Italy. Aria is designed to purify the argon, extracted from underground wells in Colorado, USA, and used as the DarkSide-20k target material, to detector-grade quality. In this paper, we report the first measurement of argon isotopic separation by distillation with the 26 m tall Aria prototype. We discuss the measurement of the operating parameters of the column and the observation of the simultaneous separation of the three stable argon isotopes: 36Ar , 38Ar , and 40Ar . We also provide a detailed comparison of the experimental results with commercial process simulation software. This measurement of isotopic separation of argon is a significant achievement for the project, building on the success of the initial demonstration of isotopic separation of nitrogen using the same equipment in 2019
Study on cosmogenic activation above ground for the DarkSide-20k project
The activation of materials due to the exposure to cosmic rays may become an
important background source for experiments investigating rare event phenomena.
DarkSide-20k is a direct detection experiment for galactic dark matter
particles, using a two-phase liquid argon time projection chamber filled with
49.7 tonnes (active mass) of Underground Argon (UAr) depleted in 39Ar. Here,
the cosmogenic activity of relevant long-lived radioisotopes induced in the
argon and other massive components of the set-up has been estimated; production
of 120 t of radiopure UAr is foreseen. The expected exposure above ground and
production rates, either measured or calculated, have been considered. From the
simulated counting rates in the detector due to cosmogenic isotopes, it is
concluded that activation in copper and stainless steel is not problematic.
Activation of titanium, considered in early designs but not used in the final
design, is discussed. The activity of 39Ar induced during extraction,
purification and transport on surface, in baseline conditions, is evaluated to
be 2.8% of the activity measured in UAr from the same source, and thus
considered acceptable. Other products in the UAr such as 37Ar and 3H are shown
to not be relevant due to short half-life and assumed purification methods
Directionality of nuclear recoils in a liquid argon time projection chamber
The direct search for dark matter in the form of weakly interacting massive
particles (WIMP) is performed by detecting nuclear recoils (NR) produced in a
target material from the WIMP elastic scattering. A promising experimental
strategy for direct dark matter search employs argon dual-phase time projection
chambers (TPC). One of the advantages of the TPC is the capability to detect
both the scintillation and charge signals produced by NRs. Furthermore, the
existence of a drift electric field in the TPC breaks the rotational symmetry:
the angle between the drift field and the momentum of the recoiling nucleus can
potentially affect the charge recombination probability in liquid argon and
then the relative balance between the two signal channels. This fact could make
the detector sensitive to the directionality of the WIMP-induced signal,
enabling unmistakable annual and daily modulation signatures for future
searches aiming for discovery. The Recoil Directionality (ReD) experiment was
designed to probe for such directional sensitivity. The TPC of ReD was
irradiated with neutrons at the INFN Laboratori Nazionali del Sud, and data
were taken with 72 keV NRs of known recoil directions. The direction-dependent
liquid argon charge recombination model by Cataudella et al. was adopted and a
likelihood statistical analysis was performed, which gave no indications of
significant dependence of the detector response to the recoil direction. The
aspect ratio R of the initial ionization cloud is estimated to be 1.037 +/-
0.027 and the upper limit is R < 1.072 with 90% confidence levelComment: 20 pages, 10 figures, submitted to Eur. Phys. J.
Sensitivity projections for a dual-phase argon TPC optimized for light dark matter searches through the ionization channel
Dark matter lighter than 10 GeV/c encompasses a promising range of
candidates. A conceptual design for a new detector, DarkSide-LowMass, is
presented, based on the DarkSide-50 detector and progress toward DarkSide-20k,
optimized for a low-threshold electron-counting measurement. Sensitivity to
light dark matter is explored for various potential energy thresholds and
background rates. These studies show that DarkSide-LowMass can achieve
sensitivity to light dark matter down to the solar neutrino floor for GeV-scale
masses and significant sensitivity down to 10 MeV/c considering the Migdal
effect or interactions with electrons. Requirements for optimizing the
detector's sensitivity are explored, as are potential sensitivity gains from
modeling and mitigating spurious electron backgrounds that may dominate the
signal at the lowest energies
A Joint Fermi-GBM and Swift-BAT Analysis of Gravitational-wave Candidates from the Third Gravitational-wave Observing Run
We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift- BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers
Search for subsolar-mass black hole binaries in the second part of Advanced LIGO’s and Advanced Virgo’s third observing run
We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2–1.0 M and mass
ratio q ≥ 0.1 in Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and Advanced Virgo data collected
between 2019 November 1, 15:00 UTC and 2020 March 27, 17:00 UTC. No signals were detected. The most significant candidate
has a false alarm rate of 0.2 yr−1. We estimate the sensitivity of our search over the entirety of Advanced LIGO’s and Advanced
Virgo’s third observing run, and present the most stringent limits to date on the merger rate of binary black holes with at least one
subsolar-mass component. We use the upper limits to constrain two fiducial scenarios that could produce subsolar-mass black
holes: primordial black holes (PBH) and a model of dissipative dark matter. The PBH model uses recent prescriptions for the
merger rate of PBH binaries that include a rate suppression factor to effectively account for PBH early binary disruptions. If the
PBHs are monochromatically distributed, we can exclude a dark matter fraction in PBHs fPBH 0.6 (at 90 per cent confidence)
in the probed subsolar-mass range. However, if we allow for broad PBH mass distributions, we are unable to rule out fPBH = 1.
For the dissipative model, where the dark matter has chemistry that allows a small fraction to cool and collapse into black holes,
we find an upper bound fDBH < 10−5 on the fraction of atomic dark matter collapsed into black holes
- …