37 research outputs found

    The eNAMPT/TLR4 inflammatory cascade drives the severity of intra-amniotic inflammation in pregnancy and predicts infant outcomes

    Get PDF
    Introduction: Intra-amniotic inflammation (IAI) or chorioamnionitis is a common complication of pregnancy producing significant maternal morbidity/mortality, premature birth and neonatal risk of chronic lung diseases such as bronchopulmonary dysplasia (BPD). We examined eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a critical inflammatory DAMP and TLR4 ligand, as a potential therapeutic target to reduce IAI severity and improve adverse fetal/neonatal outcomes.Methods: Blood/tissue samples were examined in: 1) women with histologically-proven chorioamnionitis, 2) very low birth weight (VLBW) neonates, and 3) a preclinical murine pregnancy model of IAI. Groups of pregnant IAI-exposed mice and pups were treated with an eNAMPT-neutralizing mAb.Results: Human placentas from women with histologically-proven chorioamnionitis exhibited dramatic NAMPT expression compared to placentas without chorioamnionitis. Increased NAMPT expression in whole blood from VLBW neonates (day 5) significantly predicted BPD development. Compared to untreated LPS-challenged murine dams (gestational day 15), pups born to eNAMPT mAb-treated dams (gestational days 15/16) exhibited a > 3-fold improved survival, reduced neonate lung eNAMPT/cytokine levels, and reduced development and severity of BPD and pulmonary hypertension (PH) following postnatal exposure to 100% hyperoxia days 1–14. Genome-wide gene expression studies of maternal uterine and neonatal cardiac tissues corroborated eNAMPT mAb-induced reductions in inflammatory pathway genes.Discussion: The eNAMPT/TLR4 inflammatory pathway is a highly druggable contributor to IAI pathobiology during pregnancy with the eNAMPT-neutralizing mAb a novel therapeutic strategy to decrease premature delivery and improve short- and long-term neonatal outcomes. eNAMPT blood expression is a potential biomarker for early prediction of chronic lung disease among premature neonates

    Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors

    Get PDF
    Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a colocated detector pair is more sensitive to a gravitational-wave background than a noncolocated detector pair. However, colocated detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of colocated detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO’s fifth science run. At low frequencies, 40–460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460–1000 Hz, these techniques are sufficient to set a 95% confidence level upper limit on the gravitational-wave energy density of Ω(f) < 7.7 × 10[superscript -4](f/900  Hz)[superscript 3], which improves on the previous upper limit by a factor of ~180. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.National Science Foundation (U.S.)United States. National Aeronautics and Space AdministrationCarnegie TrustDavid & Lucile Packard FoundationAlfred P. Sloan Foundatio

    Identification of Jak-STAT signaling involvement in sarcoidosis severity via a novel microRNA-regulated peripheral blood mononuclear cell gene signature

    No full text
    Sarcoidosis is a granulomatous lung disorder of unknown cause. The majority of individuals with sarcoidosis spontaneously achieve full remission (uncomplicated sarcoidosis), however, similar to 20% of sarcoidosis-affected individuals experience progressive lung disease or cardiac and nervous system involvement (complicated sarcoidosis). We investigated peripheral blood mononuclear cell (PBMC) microRNA and protein-coding gene expression data from healthy controls and patients with uncomplicated or complicated sarcoidosis. We identified 46 microRNAs and 1,559 genes that were differentially expressed across a continuum of sarcoidosis severity (healthy control -> uncomplicated sarcoidosis -> complicated sarcoidosis). A total of 19 microRNA-mRNA regulatory pairs were identified within these deregulated microRNAs and mRNAs, which consisted of 17 unique protein-coding genes yielding a 17-gene signature. Pathway analysis of the 17-gene signature revealed Jak-STAT signaling pathway as the most significantly represented pathway. A severity score was assigned to each patient based on the expression of the 17-gene signature and a significant increasing trend in the severity score was observed from healthy control, to uncomplicated sarcoidosis, and finally to complicated sarcoidosis. In addition, this microRNA-regulated gene signature differentiates sarcoidosis patients from healthy controls in independent validation cohorts. Our study suggests that PBMC gene expression is useful in diagnosis of sarcoidosis

    Circadian disruption dysregulates lung gene expression associated with inflammatory lung injury

    No full text
    RationaleCircadian systems drive the expression of multiple genes in nearly all cells and coordinate cellular-, tissue-, and system-level processes that are critical to innate immunity regulation.ObjectiveWe examined the effects of circadian rhythm disorganization, produced by light shift exposure, on innate immunity-mediated inflammatory lung responses including vascular permeability and gene expression in a C57BL/6J murine model of inflammatory lung injury.MethodsA total of 32 C57BL/6J mice were assigned to circadian phase shifting (CPS) with intratracheal phosphate-buffered saline (PBS), CPS with intratracheal lipopolysaccharide (LPS), control (normal lighting) condition with intratracheal PBS, and control condition with intratracheal LPS. Bronchoalveolar lavage (BAL) protein, cell counts, tissue immunostaining, and differentially expressed genes (DEGs) were measured in lung tissues at 2 and 10 weeks.Measurements and resultsIn mice exposed to both CPS and intratracheal LPS, both BAL protein and cell counts were increased at both 2 and 10 weeks compared to mice exposed to LPS alone. Multiple DEGs were identified in CPS–LPS-exposed lung tissues compared to LPS alone and were involved in transcriptional pathways associated with circadian rhythm disruption, regulation of lung permeability, inflammation with Rap1 signaling, and regulation of actin cytoskeleton. The most dysregulated pathways included myosin light chain kinase, MAP kinase, profilin 2, fibroblast growth factor receptor, integrin b4, and p21-activated kinase.ConclusionCircadian rhythm disruption results in exacerbated immune response and dysregulated expression of cytoskeletal genes involved in the regulation of epithelial and vascular barrier integrity—the mechanistic underpinnings of acute lung injury. Further studies need to explore circadian disorganization as a druggable target

    Expression Profiling Elucidates a Molecular Gene Signature for Pulmonary Hypertension in Sarcoidosis

    No full text
    Pulmonary hypertension (PH), when it complicates sarcoidosis, carries a poor prognosis, in part because it is difficult to detect early in patients with worsening respiratory symptoms. Pathogenesis of sarcoidosis occurs via incompletely characterized mechanisms that are distinct from the mechanisms of pulmonary vascular remodeling well known to occur in conjunction with other chronic lung diseases. To address the need for a biomarker to aid in early detection as well as the gap in knowledge regarding the mechanisms of PH in sarcoidosis, we used genome-wide peripheral blood gene expression analysis and identified an 18-gene signature capable of distinguishing sarcoidosis patients with PH (n = 8), sarcoidosis patients without PH (n = 17), and healthy controls (n = 45). The discriminative accuracy of this 18-gene signature was 100% in separating sarcoidosis patients with PH from those without it. If validated in a large replicate cohort, this signature could potentially be used as a diagnostic molecular biomarker for sarcoidosis-associated PH.National Institutes of Health (NIH) [K23HL098454, 1R01HL111656, R01 HL127342, U01 HL112696, U01HL125208]First Published January 23, 2017; 12 Month Embargo.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore