27 research outputs found
Bioquímica del surfactante pulmonar. Lisolecitina : Lisolecitina Aciltransferasa del pulmón del conejo
Tesis de la Universidad Complutense de Madrid, 1981.Sección Deptal. de Bioquímica y Biología Molecular (Biológicas)Fac. de Ciencias BiológicasTRUEProQuestpu
Bioquímica del surfactante pulmonar. Lisolecitina : Lisolecitina Aciltransferasa del pulmón del conejo
Tesis de la Universidad Complutense de Madrid, 1981.Sección Deptal. de Bioquímica y Biología Molecular (Biológicas)Fac. de Ciencias BiológicasTRUEProQuestpu
Soluble defense collagens: sweeping up immune threats
Soluble defense collagens form a group of secreted proteins that are primarily involved in host defense. All defense collagens contain a globular recognition domain contiguous to a collagen-like triple helical domain. They are oligomeric proteins, assembled in multiples of three subunits due to their collagen domains. Members of this group include collectins such as surfactant protein A and D (SP-A, SP-D), and mannan-binding lectin; C1q, the first component of the complement system; adiponectin; and ficolins. All are secreted to tissue cavities or serum. Soluble defense collagens are specialized to respond to infection, triggering the initiation of the complement cascade and/or enhancing phagocytosis of pathogens by macrophages. However, once inflammation is established, C1q, collectins, ficolins, or adiponectin can influence macrophage responses, thereby contributing to resolve the inflammation. In addition, some members of this group of proteins (SP-A, C1q, and adiponectin) modulate tissue-repair functions of macrophages. This review will focus on the molecular mechanisms by which these proteins efficiently defend against immune threats and contribute to tissue repair
Synergistic action of antimicrobial lung proteins against Klebsiella pneumoniae
As key components of innate immunity, lung antimicrobial proteins play a critical role in warding off invading respiratory pathogens. Lung surfactant protein A (SP-A) exerts synergistic antimicrobial activity with the N-terminal segment of the SP-B proprotein (SP-BN) against Klebsiella pneumoniae K2 in vivo. However, the factors that govern SP-A/SP-BN antimicrobial activity are still unclear. The aim of this study was to identify the mechanisms by which SP-A and SP-BN act synergistically against K. pneumoniae, which is resistant to either protein alone. The effect of these proteins on K. pneumoniae was studied by membrane permeabilization and depolarization assays and transmission electron microscopy. Their effects on model membranes of the outer and inner bacterial membranes were analyzed by differential scanning calorimetry and membrane leakage assays. Our results indicate that the SP-A/SP-BN complex alters the ultrastructure of K. pneumoniae by binding to lipopolysaccharide molecules present in the outer membrane, forming packing defects in the membrane that may favor the translocation of both proteins to the periplasmic space. The SP-A/SP-BN complex depolarized and permeabilized the inner membrane, perhaps through the induction of toroidal pores. We conclude that the synergistic antimicrobial activity of SP-A/SP-BN is based on the capability of this complex, but not either protein alone, to alter the integrity of bacterial membranes
Pulmonary surfactant inactivation by β-D-glucan and protective role of surfactant protein A
Pulmonary fungal infections lead to damage of the endogenous lung surfactant system. However, the molecular mechanism underlying surfactant inhibition is unknown. β-D-glucan is the major component of pathogenic fungal cell walls and is also present in organic dust, which increases the risk of respiratory diseases. The objective of this study was to characterize the interaction of this D-glucopyranose polymer with pulmonary surfactant. Our results show that β-D-glucan induced a concentration-dependent inhibition of the surface adsorption, respreading, and surface tension-lowering activity of surfactant preparations containing surfactant proteins SP-B and SP-C. Our data support a new mechanism of surfactant inhibition that consists in the extraction of phospholipid molecules from surfactant membranes by β-D-glucan. As a result, surfactant membranes became more fluid, as demonstrated by fluorescence anisotropy, and showed decreased Tm and transition enthalpy. Surfactant preparations containing surfactant protein A (SP-A) were more resistant to β-D-glucan inhibition. SP-A bound to different β-D-glucans with high affinity (Kd = 1.5 ± 0.1 nM), preventing and reverting β-D-glucan inhibitory effects on surfactant interfacial adsorption and partially abrogating β-D-glucan inhibitory effects on surfactant’s reduction of surface tension. We conclude that β-D-glucan inhibits the biophysical function of surfactant preparations lacking SP-A by subtraction of phospholipids from surfactant bilayers and monolayers. The increased resistance of SP-A-containing surfactant preparations to β-D-glucan reinforces its use in surfactant replacement therapy
Lung Surfactant Lipids Provide Immune Protection Against Haemophilus influenzae Respiratory Infection
Non-typeable Haemophilus influenzae (NTHi) causes persistent respiratory infections in patients with chronic obstructive pulmonary disease (COPD), probably linked to its capacity to invade and reside within pneumocytes. In the alveolar fluid, NTHi is in contact with pulmonary surfactant, a lipoprotein complex that protects the lung against alveolar collapse and constitutes the front line of defense against inhaled pathogens and toxins. Decreased levels of surfactant phospholipids have been reported in smokers and patients with COPD. The objective of this study was to investigate the effect of surfactant phospholipids on the host-pathogen interaction between NTHi and pneumocytes. For this purpose, we used two types of surfactant lipid vesicles present in the alveolar fluid: (i) multilamellar vesicles (MLVs, > 1 μm diameter), which constitute the tensioactive material of surfactant, and (ii) small unilamellar vesicles (SUVs, 0.1 μm diameter), which are generated after inspiration/expiration cycles, and are endocytosed by pneumocytes for their degradation and/or recycling. Results indicated that extracellular pulmonary surfactant binds to NTHi, preventing NTHi self-aggregation and inhibiting adhesion of NTHi to pneumocytes and, consequently, inhibiting NTHi invasion. In contrast, endocytosed surfactant lipids, mainly via the scavenger receptor SR-BI, did not affect NTHi adhesion but inhibited NTHi invasion by blocking bacterial uptake in pneumocytes. This blockade was made possible by inhibiting Akt phosphorylation and Rac1 GTPase activation, which are signaling pathways involved in NTHi internalization. Administration of the hydrophobic fraction of lung surfactant in vivo accelerated bacterial clearance in a mouse model of NTHi pulmonary infection, supporting the notion that the lipid component of lung surfactant protects against NTHi infection. These results suggest that alterations in surfactant lipid levels in COPD patients may increase susceptibility to infection by this pathogen
Differential scanning calorimetry of protein-lipid interactions
This work was supported by the Ministerio de Ciencia e Innovacion (SAF2009-07810) and Instituto de Salud Carlos III (cibeRESCB06/06/0002).Differential scanning calorimetry (DSC) is a highly sensitive non-perturbing technique for measuring the thermodynamic properties of thermally induced transitions. This technique is particularly useful for the characterization of lipid/protein interactions. This chapter presents an introduction to DSC instrumentation, basic theory, and methods and describes DSC applications for characterizing protein effects on model lipid membranes. Examples of the use of DSC for the evaluation of protein effects on modulation of membrane domains and membrane stability are given.Ministerio de Ciencia e InnovacionInstituto de Salud Carlos IIIDepto. de Bioquímica y Biología MolecularFac. de Ciencias QuímicasTRUEpu
Role of lipid ordered/disordered phase coexistence in pulmonary surfactant function
The respiratory epithelium has evolved to produce a complicated network of extracellular membranes that are essential for breathing and, ultimately, survival. Surfactant membranes form a stable monolayer at the air-liquid interface with bilayer structures attached to it. By reducing the surface tension at the air-liquid interface, surfactant stabilizes the lung against collapse and facilitates inflation. The special composition of surfactant membranes results in the coexistence of two distinct micrometer-sized ordered/disordered phases maintained up to physiological temperatures. Phase coexistence might facilitate monolayer folding to form three-dimensional structures during exhalation and hence allow the film to attain minimal surface tension. These folded structures may act as a membrane reserve and attenuate the increase in membrane tension during inspiration. The present review summarizes what is known of ordered/disordered lipid phase coexistence in lung surfactant, paying attention to the possible role played by domain boundaries in the monolayer-to-multilayer transition, and the correlations of biophysical inactivation of pulmonary surfactant with alterations in phase coexistence.Ministerio de Ciencia e Innovación (MCIN)Instituto de Salud Carlos IIIDepto. de Bioquímica y Biología MolecularFac. de Ciencias BiológicasTRUEpu
Bacterial lipopolysaccharide promotes destabilization of lung surfactant-like films
The airspaces are lined with a dipalmitoylphosphatidylcholine (DPPC)-rich film called pulmonary surfactant, which is named for its ability to maintain normal respiratory mechanics by reducing surface tension at the air-liquid interface. Inhaled airborne particles containing bacterial lipopolysaccharide (LPS) may incorporate into the surfactant monolayer. In this study, we evaluated the effect of smooth LPS (S-LPS), containing the entire core oligosaccharide region and the O-antigen, on the biophysical properties of lung surfactant-like films composed of either DPPC or DPPC/palmitoyloleoylphosphatidylglycerol (POPG)/palmitic acid (PA) (28:9:5.6, w/w/w). Our results show that low amounts of S-LPS fluidized DPPC monolayers, as demonstrated by fluorescence microscopy and changes in the compressibility modulus. This promoted early collapse and prevented the attainment of high surface pressures. These destabilizing effects could not be relieved by repeated compression-expansion cycles. Similar effects were observed with surfactant-like films composed of DPPC/POPG/PA. On the other hand, the interaction of SP-A, a surfactant membrane-associated alveolar protein that also binds to LPS, with surfactant-like films containing S-LPS increased monolayer destabilization due to the extraction of lipid molecules from the monolayer, leading to the dissolution of monolayer material in the aqueous subphase. This suggests that SP-A may act as an LPS scavenger.Ministerio de Ciencia e Innovación (MCIN)Instituto de Salud Carlos III. Centro de Investigación Biomédica en Red de EnfermedadeRespiratorias (CIBERES)Comunidad de MadridFundación Médica MMCanadian Institutes of Health ResearchDepto. de Bioquímica y Biología MolecularFac. de Ciencias BiológicasTRUEpu
Equilibrium studies of a fluorescent tacrolimus binding to surfactant protein A
Tacrolimus (FK506) is a hydrophobic immunosuppressive agent used in kidney, liver, and lung transplantation. The objective of this study was to characterize the binding of FK506 to surfactant protein A (SP-A), an abundant lipoprotein found in the alveolar fluid that functions as part of the innate immune system in the lung. We have synthesized a novel derivative of FK506 in which a dansyl moiety was covalently bound via cadaverine to the C22 position of the FK506 molecule (DNS-FK). Using the fluorescence and anisotropy properties of DNS-FK, we demonstrated that tacrolimus avidly binds to SP-A with an apparent equilibrium association constant (K(app)) of 10(7)M(-1) and a Gibbs binding free energy of -40 kJ mol(-1)K(-1). Derivatization of FK506 at the C22 position did not block FK506 binding to the cytosolic immunophilin FK506-binding protein (FK-BP) or human serum albumin (HSA), both used as controls of tacrolimus-binding proteins. K(app) for FK-BP/DNS-FK and HSA/DNS-FK complexes were 1.5 x 10(7) and 10(7)M(-1), respectively. The high sensitivity of this analytical technique makes it suitable for binding analysis of FK506 to proteinsFondo de Investigacion SanitariaMCyTFujisawa GmbHDepto. de Bioquímica y Biología MolecularDepto. de Química OrgánicaFac. de Ciencias BiológicasFac. de Ciencias QuímicasTRUEpu