1,133 research outputs found

    Exploring the bulk of tidal charged micro-black holes

    Full text link
    We study the bulk corresponding to tidal charged brane-world black holes. We employ a propagating algorithm which makes use of the three-dimensional multipole expansion and analytically yields the metric elements as functions of the five-dimensional coordinates and of the ADM mass, tidal charge and brane tension. Since the projected brane equations cannot determine how the charge depends on the mass, our main purpose is to select the combinations of these parameters for which black holes of microscopic size possess a regular bulk. Our results could in particular be relevant for a better understanding of TeV-scale black holes.Comment: Latex, 15 pages, 1 table, 5 figures; Section 3.2 extended, typos corrected, no change in conclusion

    e-EVN monitoring of M87

    Get PDF
    M87 is a privileged laboratory for a detailed study of the properties of jets, owing to its proximity (D=16.7 Mpc, 1 mas = 0.080 pc), its massive black hole (~6.0 x 10^9M) and its conspicuous emission at radio wavelengths and above. We started on November 2009 a monitoring program with the e-EVN at 5 GHz, in correspondence of the season of Very High Energy (VHE) observations. Indeed, two episodes of VHE activity have been reported in February and April 2010. We present here the main results of these multi-epoch observations: the inner jet and HST-1 are both detected and resolved in our datasets. We study the apparent velocity of HST-1, which seems to be increasing since 2005, and the flux density variability in the inner jet. All in all, the radio counterpart to this year’s VHE event seems to be different from the ones in 2005 and 2008, opening new scenario for the radio-high energy connection

    Brane-world black holes and the scale of gravity

    Full text link
    A particle in four dimensions should behave like a classical black hole if the horizon radius is larger than the Compton wavelength or, equivalently, if its degeneracy (measured by entropy in units of the Planck scale) is large. For spherically symmetric black holes in 4 + d dimensions, both arguments again lead to a mass threshold MC and degeneracy scale Mdeg of the order of the fundamental scale of gravity MG. In the brane-world, deviations from the Schwarzschild metric induced by bulk effects alter the horizon radius and effective four-dimensional Euclidean action in such a way that MC \simeq Mdeg might be either larger or smaller than MG. This opens up the possibility that black holes exist with a mass smaller than MG and might be produced at the LHC even if M>10 TeV, whereas effects due to bulk graviton exchanges remain undetectable because suppressed by inverse powers of MG. Conversely, even if black holes are not found at the LHC, it is still possible that MC>MG and MG \simeq 1TeV.Comment: 4 pages, no figur

    Gravitational collapse and evolution of holographic black holes

    Full text link
    Gravitational collapse is analyzed in the Brane-World by arguing that regularity of five-dimensional geodesics require that stars on the brane have an atmosphere. For the simple case of a spherically symmetric cloud of non-dissipating dust, conditions are found for which the collapsing star evaporates and approaches the Hawking behavior as the (apparent) horizon is being formed. The effective energy of the star vanishes at a finite radius and the star afterwards re-expands and "anti-evaporates". Israel junction conditions across the brane (holographically related to the matter trace anomaly) and the projection of the Weyl tensor on the brane (holographically interpreted as the quantum back-reaction on the brane metric) contribute to the total energy as, respectively, an "anti-evaporation" and an "evaporation" term.Comment: 6 pages; Talk given at QG05, Cala Gonone (Italy), September 200

    Sensory Motor Remapping of Space in Human-Machine Interfaces

    Get PDF
    Studies of adaptation to patterns of deterministic forces have revealed the ability of the motor control system to form and use predictive representations of the environment. These studies have also pointed out that adaptation to novel dynamics is aimed at preserving the trajectories of a controlled endpoint, either the hand of a subject or a transported object. We review some of these experiments and present more recent studies aimed at understanding how the motor system forms representations of the physical space in which actions take place. An extensive line of investigations in visual information processing has dealt with the issue of how the Euclidean properties of space are recovered from visual signals that do not appear to possess these properties. The same question is addressed here in the context of motor behavior and motor learning by observing how people remap hand gestures and body motions that control the state of an external device. We present some theoretical considerations and experimental evidence about the ability of the nervous system to create novel patterns of coordination that are consistent with the representation of extrapersonal space. We also discuss the perspective of endowing human–machine interfaces with learning algorithms that, combined with human learning, may facilitate the control of powered wheelchairs and other assistive devices

    Gravitational Collapse of a Radiating Shell

    Full text link
    We study the collapse of a self-gravitating and radiating shell. Matter constituting the shell is quantized and the construction is viewed as a semiclassical model of possible black hole formation. It is shown that the shell internal degrees of freedom are excited by the quantum non-adiabaticity of the collapse and, consequently, on coupling them to a massless scalar field, the collapsing matter emits a burst of coherent (thermal) radiation.Comment: LaTeX, 34 pages, 21 EPS figures include

    Theoretical survey of tidal-charged black holes at the LHC

    Full text link
    We analyse a family of brane-world black holes which solve the effective four-dimensional Einstein equations for a wide range of parameters related to the unknown bulk/brane physics. We first constrain the parameters using known experimental bounds and, for the allowed cases, perform a numerical analysis of their time evolution, which includes accretion through the Earth. The study is aimed at predicting the typical behavior one can expect if such black holes were produced at the LHC. Most notably, we find that, under no circumstances, would the black holes reach the (hazardous) regime of Bondi accretion. Nonetheless, the possibility remains that black holes live long enough to escape from the accelerator (and even from the Earth's gravitational field) and result in missing energy from the detectors.Comment: RevTeX4, 12 pages, 4 figures, 5 tables, minor changes to match the accepted version in JHE

    Holography and trace anomaly: what is the fate of (brane-world) black holes?

    Get PDF
    The holographic principle relates (classical) gravitational waves in the bulk to quantum fluctuations and the Weyl anomaly of a conformal field theory on the boundary (the brane). One can thus argue that linear perturbations in the bulk of static black holes located on the brane be related to the Hawking flux and that (brane-world) black holes are therefore unstable. We try to gain some information on such instability from established knowledge of the Hawking radiation on the brane. In this context, the well-known trace anomaly is used as a measure of both the validity of the holographic picture and of the instability for several proposed static brane metrics. In light of the above analysis, we finally consider a time-dependent metric as the (approximate) representation of the late stage of evaporating black holes which is characterized by decreasing Hawking temperature, in qualitative agreement with what is required by energy conservation.Comment: 11 pages, 2 figures, a few comments and references added, accepted for publication in Phys. Rev.

    EMG Based Body-Machine Interface for Adaptive and Personalized Robotic Training of Persons with Multiple Sclerosis

    Get PDF
    Multiple sclerosis is a complex neurological disease that results in motor impairment associated with muscle weakness and lack of motor coordination. Indeed, previous studies showed that, while activities in isolated arm muscles appeared generally similar to those of unimpaired subjects, shoulder muscle coordination with arm motions was affected by MS and there was a marked co-activation of the biceps and triceps in the extension movements. This inability to activate muscles independently has a significant impact in motor function therefore reducing the co-contraction could improve the overall arm function. In this pilot study, we developed a body-machine interface based on muscle activities with the goal of ‘breaking’ the abnormal triceps-biceps co-activation during planar flexion-extension movements of people with multiple sclerosis during a robot-based task. The task consisted in 2D center-out reaching movements with the assistance of a robotic manipulandum. When the subject was not exhibiting the abnormal triceps-biceps co-activation for three consecutive movements the robot was decreasing the assistance. Subjects trained for up to six 1-hour sessions in three weeks. Results showed that the assistance from the robot decreased within each session for most of the subjects, while the movement became faster and straighter. The comparison between muscle activity before and after the training with this body-machine interface demonstrated that subjects learned how to reduce the tricepsbiceps co-activation
    • …
    corecore