453 research outputs found

    Epigenetic Modifiers Are Necessary but Not Sufficient for Reprogramming Non-Myelinating Cells into Myelin Gene-Expressing Cells

    Get PDF
    Modifications on specific histone residues and DNA methylation play an essential role in lineage choice and cellular reprogramming. We have previously shown that histone modifications or combinatorial codes of transcription factors (TFs) are critical for the differentiation of multipotential progenitors into myelinating oligodendrocytes. In this study we asked whether combining global manipulation of DNA methylation and histone acetylation together with the expression of oligodendrocyte-specific TFs, was sufficient to switch the identity of fibroblasts into myelin gene-expressing cells.Transfection of six oligodendrocyte-specific TFs (Olig1, Olig2, Sox10, Mash1, E47 and Nkx2.2) into NIH3T3 fibroblasts was capable of inducing expression of myelin gene promoter-driven reporters, but did not activate endogenous myelin gene expression. These results suggested the existence of a transcriptionally incompetent chromatin conformation in NIH3T3 fibroblasts. Using chromatin immunoprecipitation (ChIP) analysis, we compared the histone code on the conserved regions of myelin genes (i.e. Mbp and Mag) in differentiating oligodendrocyte progenitors and NIH3T3 fibroblasts. Chromatin at myelin gene loci was characterized by the presence of repressive histone modifications (me3K9H3 and me3K27H3) in NIH3T3 fibroblasts and active histone marks (me3K4H3 and AcH3) in oligodendrocyte lineage cells. To induce a transcriptionally competent chromatin signature, NIH3T3 fibroblasts were treated with 5-azadeoxy-citidine (5-AzaC) to decrease DNA methylation, and trichostatin A (TSA) or sirtinol, to favor histone acetylation. Treatment with 5-AzaC/TSA but not sirtinol, resulted in the detection of endogenous myelin gene transcripts in fibroblasts, although not to the levels detected in myelinating cells. Transfection of oligodendrocyte-specific TFs after 5-AzaC/TSA treatment did not further increase myelin gene expression, nor did it reprogram the transcriptional network of NIH3T3 fibroblasts into that of oligodendrocytes.These results suggest that reprogramming of fibroblasts into myelin gene-expressing cells not only requires transcriptional activation, but also chromatin manipulations that go beyond histone acetylation and DNA methylation

    Body Mass Index in Multiple Sclerosis modulates ceramide-induced DNA methylation and disease course

    Get PDF
    Background: Multiple Sclerosis (MS) results from genetic predisposition and environmental variables, including elevated Body Mass Index (BMI) in early life. This study addresses the effect of BMI on the epigenome of monocytes and disease course in MS. Methods: Fifty-four therapy-naive Relapsing Remitting (RR) MS patients with high and normal BMI received clinical and MRI evaluation. Blood samples were immunophenotyped, and processed for unbiased plasma lipidomic profiling and genome-wide DNA methylation analysis of circulating monocytes. The main findings at baseline were validated in an independent cohort of 91 therapy-na\uefve RRMS patients. Disease course was evaluated by a two-year longitudinal follow up and mechanistic hypotheses tested in human cell cultures and in animal models of MS. Findings: Higher monocytic counts and plasma ceramides, and hypermethylation of genes involved in negative regulation of cell proliferation were detected in the high BMI group of MS patients compared to normal BMI. Ceramide treatment of monocytic cell cultures increased proliferation in a dose-dependent manner and was prevented by DNA methylation inhibitors. The high BMI group of MS patients showed a negative correlation between monocytic counts and brain volume. Those subjects at a two-year follow-up showed increased T1 lesion load, increased disease activity, and worsened clinical disability. Lastly, the relationship between body weight, monocytic infiltration, DNA methylation and disease course was validated in mouse models of MS. Interpretation: High BMI negatively impacts disease course in Multiple Sclerosis by modulating monocyte cell number through ceramide-induced DNA methylation of anti-proliferative genes. Fund: This work was supported by funds from the Friedman Brain Institute, NIH, and Multiple Sclerosis Society

    The envelope protein of Usutu virus attenuates West Nile virus virulence in immunocompetent mice

    Get PDF
    West Nile virus (WNV) and Usutu virus (USUV) are the two most widespread mosquito-borne flaviviruses in Europe causing severe neuroinvasive disease in humans. Here, following standardization of the murine model with wild type (wt) viruses, we engineered WNV and USUV genome by reverse genetics. A recombinant virus carrying the 5′ UTR of WNV within the USUV genome backbone (r-USUV5′-UTR WNV) was rescued; when administered to mice this virus did not cause signs or disease as wt USUV suggesting that 5′ UTR of a marked neurotropic parental WNV was not per se a virulence factor. Interestingly, a chimeric virus carrying the envelope (E) protein of USUV in the WNV genome backbone (r-WNVE-USUV) showed an attenuated profile in mice compared to wt WNV but significantly more virulent than wt USUV. Moreover, except when tested against serum samples originating from a live WNV infection, r-WNVE-USUV showed an identical antigenic profile to wt USUV confirming that E is also the major immunodominant protein of USUV

    Hypoxia Alters Cell Cycle Regulatory Protein Expression and Induces Premature Maturation of Oligodendrocyte Precursor Cells

    Get PDF
    Periventricular white matter injury (PWMI) is a common form of brain injury sustained by preterm infants. A major factor that predisposes to PWMI is hypoxia. Because oligodendrocytes (OLs) are responsible for myelination of axons, abnormal OL development or function may affect brain myelination. At present our understanding of the influences of hypoxia on OL development is limited. To examine isolated effects of hypoxia on OLs, we examined the influences of hypoxia on OL development in vitro.Cultures of oligodendrocyte precursor cells (OPCs) were prepared from mixed glial cultures and were 99% pure. OPCs were maintained at 21% O(2) or hypoxia (1% or 4% O(2)) for up to 7 days. We observed that 1% O(2) lead to an increase in the proportion of myelin basic protein (MBP)-positive OLs after 1 week in culture, and a decrease in the proportion of platelet-derived growth factor receptor alpha (PDGFRalpha)-positive cells suggesting premature OL maturation. Increased expression of the cell cycle regulatory proteins p27(Kip1) and phospho-cdc2, which play a role in OL differentiation, was seen as well.These results show that hypoxia interferes with the normal process of OL differentiation by inducing premature OPC maturation

    Body Mass Index in Multiple Sclerosis modulates ceramide-induced DNA methylation and disease course.

    Get PDF
    abstract Background: Multiple Sclerosis (MS) results from genetic predisposition and environmental variables, including elevated Body Mass Index (BMI) in early life. This study addresses the effect ofBMI on the epigenome ofmono- cytesand diseasecourseinMS. Methods: Fifty-four therapy-naive Relapsing Remitting (RR)MS patientswith high and normal BMI received clin- ical andMRI evaluation. Blood samples were immunophenotyped, and processed for unbiased plasma lipidomic profiling and genome-wide DNA methylation analysis of circulating monocytes. The main findings at baseline were validated in an independent cohort of 91 therapy-naĂŻve RRMS patients. Disease course was evaluated by a two-year longitudinal follow up and mechanistic hypotheses tested in human cell cultures and in animal models ofMS. Findings: Higher monocytic counts and plasma ceramides, and hypermethylation of genes involved in negative regulation ofcell proliferationwere detected in the high BMI group ofMSpatients compared to normal BMI. Cer- amide treatment of monocytic cell cultures increased proliferation in a dose-dependent manner and was prevented by DNA methylation inhibitors. The high BMI group ofMS patients showed a negative correlation be- tween monocytic counts and brain volume. Those subjects at a two-year follow-up showed increased T1 lesion load, increased disease activity, and worsened clinical disability. Lastly, the relationship between body weight, monocytic infiltration, DNA methylation and disease course was validated in mouse models ofMS. Interpretation: High BMI negatively impacts disease course in Multiple Sclerosis by modulating monocyte cell number through ceramide-induced DNA methylation of anti-proliferative genes

    PKCη promotes a proliferation to differentiation switch in keratinocytes via upregulation of p27Kip1 mRNA through suppression of JNK/c-Jun signaling under stress conditions

    Get PDF
    To maintain epidermal homeostasis, the balance between keratinocyte proliferation and differentiation is tightly controlled. However, the molecular mechanisms underlying this balance remain unclear. In 3D organotypic coculture with mouse keratinocytes and fibroblasts, the thickness of stratified cell layers was prolonged, and growth arrest and terminal differentiation were delayed when PKCη-null keratinocytes were used. Re-expression of PKCη in PKCη-null keratinocytes restored stratified cell layer thickness, growth arrest and terminal differentiation. We show that in 3D cocultured PKCη-null keratinocytes, p27Kip1 mRNA was downregulated, whereas JNK/c-Jun signaling was enhanced. Furthermore, inhibition of JNK/c-Jun signaling in PKCη-null keratinocytes led to upregulation of p27Kip1 mRNA, and to thinner stratified cell layers. Collectively, our findings indicate that PKCη upregulates p27Kip1 mRNA through suppression of JNK/c-Jun signaling. This results in promoting a proliferation to differentiation switch in keratinocytes

    Somatic cell type specific gene transfer reveals a tumor-promoting function for p21Waf1/Cip1

    Get PDF
    How proteins participate in tumorigenesis can be obscured by their multifunctional nature. For example, depending on the cellular context, the cdk inhibitors can affect cell proliferation, cell motility, apoptosis, receptor tyrosine kinase signaling, and transcription. Thus, to determine how a protein contributes to tumorigenesis, we need to evaluate which functions are required in the developing tumor. Here we demonstrate that the RCAS/TvA system, originally developed to introduce oncogenes into somatic cells of mice, can be adapted to allow us to define the contribution that different functional domains make to tumor development. Studying the development of growth-factor-induced oligodendroglioma, we identified a critical role for the Cy elements in p21, and we showed that cyclin D1T286A, which accumulates in the nucleus of p21-deficient cells and binds to cdk4, could bypass the requirement for p21 during tumor development. These genetic results suggest that p21 acts through the cyclin D1–cdk4 complex to support tumor growth, and establish the utility of using a somatic cell modeling system for defining the contribution proteins make to tumor development
    • …
    corecore