6 research outputs found

    Invading macrophages play a major role in the liver progenitor cell response to chronic liver injury

    No full text
    Background & Aims: Although a strong association between liver progenitor cells (LPCs) and inflammation exists in many chronic liver diseases, the exact role of the immune system in LPC-mediated hepatic regeneration remains unclear. A number of pro-inflammatory factors were identified in cytokine knockout mice in which the LPC response was attenuated but neither the mechanism nor the producing cells are known. Methods: To identify the critical immune cells and cytokines required in the LPC response, we compared two diet-induced models of liver injury with two recently established transgenic models of immune-mediated hepatitis. Results: Despite severe inflammation being observed in all models, the generation of LPCs was highly dependent on the cause and kinetics of liver damage. The LPC response was associated with an increase of macrophages and CD8+ T cells but not natural killer cells. T cell-deficient mice were able to mount a LPC response, albeit delayed, suggesting that T cells are not essential. Mice mounting an LPC response showed elevated numbers of Kupffer cells and invading CX3CR1 highCCR2high macrophages secreting persistent high levels of tumour necrosis factor alpha (TNFa), a major cytokine involved in the LPC response. Conclusions: Liver macrophages are an important determinant of LPC expansion during liver regeneration in models of diet- and immune-mediated liver injury. Invading macrophages in particular provide pro-mitogenic cytokines such as TNFa that underpin the process. LPC themselves are a source of chemokines (CCL2, CX3CL1) that attract infiltrating macrophages. © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved

    Glycolytic control of adjuvant-induced macrophage survival: Role of PI3K, MEK1/2, and Bcl-2

    No full text
    Uptake by macrophages forms an important part of the mode of action of particulate adjuvants such as oil-in-water emulsions and alum. We have found previously that such adjuvants promote macrophage survival and suggested that this response may contribute to their efficacy. To explore this adjuvant activity further, we have investigated whether oil-in-water emulsion stimulates glucose uptake in macrophages and whether such uptake is relevant to the promotion of survival. We found that oil-in-water emulsion stimulated glucose uptake in a biphasic manner. The first acute phase was independent of mRNA and protein synthesis but appeared to require PI3K activity. In contrast, the second chronic phase was dependent on mRNA and protein synthesis. Importantly, the second phase of glucose uptake required MEK1/2 as well as PI3K activity, indicating that the MEK1/2 pathway can also contribute to cellular glucose uptake. The increased glucose transporter 1 expression during the second phase and long-term survival also appeared to be dependent on PI3K and MEK1/2 signaling pathways. Metabolism of the glucose was required for the emulsion-stimulated survival as well as the increase of prosurvival Bcl-2 transcript levels and maintenance of Bcl-2 protein expression. As transgenic overexpression of Bcl-2 enhances the survival of macrophages in the absence of growth factor, the glycolytic control of Bcl-2 levels may play a central role in emulsionstimulated macrophage survival. Enhanced glucose uptake by macrophages may therefore be critical to the action of particulate adjuvants. © Society for Leukocyte Biology

    Identification of a thalidomide derivative that selectively targets tumorigenic liver progenitor cells and comparing its effects with lenalidomide and sorafenib

    Get PDF
    © 2016 Elsevier Masson SASBackground & aims The availability of non-tumorigenic and tumorigenic liver progenitor cell (LPC) lines affords a method to screen putative anti-liver cancer agents to identify those that are selectively effective. To prove this principle we tested thalidomide and a range of its derivatives and compared them to lenalidomide and sorafenib, to assess their growth-inhibitory effects. Methods Cell growth, the mitotic and apoptotic index of cell cultures were measured using the Cellavista instrument (SynenTec) using commercially available reagents. Results Neither lenalidomide nor thalidomide (100 µM) affected tumorigenic LPCs but killed their non-tumorigenic counterparts. Sorafenib arrested growth in both cell types. All but two derivatives of thalidomide were ineffective; of the two effective derivatives, one (thalidomide C1) specifically affected the tumorigenic cell line (10 µM). Mitotic and apoptotic analyses revealed that thalidomide C1 induced apoptotic cell death and not mitotic arrest. Conclusions This study shows that screens incorporating non-tumorigenic and tumorigenic liver cell lines are a sound approach to identify agents that are effective and selective. A high throughput instrument such as the Cellavista affords robust and reproducible objective measurements with a large number of replicates that are reliable. These experiments show that neither lenalidomide nor thalidomide are potentially useful for anti-liver cancer therapy as they kill non-tumorigenic liver cells and not their tumorigenic counterparts. Sorafenib in contrast, is highly effective, but not selective. One tested thalidomide derivative has potential as an anti-tumor drug since it induced growth arrest; and importantly, it selectively induced apoptotic cell death only in tumorigenic liver progenitor cells
    corecore