32 research outputs found

    Duration of temporary catheter use for hemodialysis: an observational, prospective evaluation of renal units in Brazil

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For chronic hemodialysis, the ideal permanent vascular access is the arteriovenous fistula (AVF). Temporary catheters should be reserved for acute dialysis needs. The AVF is associated with lower infection rates, better clinical results, and a higher quality of life and survival when compared to temporary catheters. In Brazil, the proportion of patients with temporary catheters for more than 3 months from the beginning of therapy is used as an evaluation of the quality of renal units. The aim of this study is to evaluate factors associated with the time between the beginning of hemodialysis with temporary catheters and the placement of the first arteriovenous fistula in Brazil.</p> <p>Methods</p> <p>This is an observational, prospective non-concurrent study using national administrative registries of all patients financed by the public health system who began renal replacement therapy (RRT) between 2000 and 2004 in Brazil. Incident patients were eligible who had hemodialysis for the first time. Patients were excluded who: had hemodialysis reportedly started after the date of death (inconsistent database); were younger than 18 years old; had HIV; had no record of the first dialysis unit; and were dialyzed in units with less than twenty patients. To evaluate individual and renal unit factors associated with the event of interest, the frailty model was used (N = 55,589).</p> <p>Results</p> <p>Among the 23,824 patients (42.9%) who underwent fistula placement in the period of the study, 18.2% maintained the temporary catheter for more than three months until the fistula creation. The analysis identified five statistically significant factors associated with longer time until first fistula: higher age (Hazard-risk - HR 0.99, 95% CI 0.99-1.00); having hypertension and cardiovascular diseases (HR 0.94, 95% CI 0.9-0.98) as the cause of chronic renal disease; residing in capitals cities (HR 0.92, 95% CI 0.9-0.95) and certain regions in Brazil - South (HR 0.83, 95% CI 0.8-0.87), Midwest (HR 0.88, 95% CI 0.83-0.94), Northeast (HR 0.91, 95% CI 0.88-0.94), or North (HR 0.88, 95% CI 0.83-0.94) and the type of renal unit (public or private).</p> <p>Conclusion</p> <p>Monitoring the provision of arteriovenous fistulas in renal units could improve the care given to patients with end stage renal disease.</p

    Genotoxic potential generated by biomass burning in the Brazilian Legal Amazon by Tradescantia micronucleus bioassay: a toxicity assessment study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Brazilian Amazon has suffered impacts from non-sustainable economic development, especially owing to the expansion of agricultural commodities into forest areas. The Tangará da Serra region, located in the southern of the Legal Amazon, is characterized by non-mechanized sugar cane production. In addition, it lies on the dispersion path of the pollution plume generated by biomass burning. The aim of this study was to assess the genotoxic potential of the atmosphere in the Tangará da Serra region, using <it>Tradescantia pallida </it>as <it>in situ </it>bioindicator.</p> <p>Methods</p> <p>The study was conducted during the dry and rainy seasons, where the plants were exposed to two types of exposure, active and passive.</p> <p>Results</p> <p>The results showed that in all the sampling seasons, irrespective of exposure type, there was an increase in micronucleus frequency, compared to control and that it was statistically significant in the dry season. A strong and significant relationship was also observed between the increase in micronucleus incidence and the rise in fine particulate matter, and hospital morbidity from respiratory diseases in children.</p> <p>Conclusions</p> <p>Based on the results, we demonstrated that pollutants generated by biomass burning in the Brazilian Amazon can induce genetic damage in test plants that was more prominent during dry season, and correlated with the level of particulates and elevated respiratory morbidity.</p

    How Thioredoxin Dissociates Its Mixed Disulfide

    Get PDF
    The dissociation mechanism of the thioredoxin (Trx) mixed disulfide complexes is unknown and has been debated for more than twenty years. Specifically, opposing arguments for the activation of the nucleophilic cysteine as a thiolate during the dissociation of the complex have been put forward. As a key model, the complex between Trx and its endogenous substrate, arsenate reductase (ArsC), was used. In this structure, a Cys29Trx-Cys89ArsC intermediate disulfide is formed by the nucleophilic attack of Cys29Trx on the exposed Cys82ArsC-Cys89ArsC in oxidized ArsC. With theoretical reactivity analysis, molecular dynamics simulations, and biochemical complex formation experiments with Cys-mutants, Trx mixed disulfide dissociation was studied. We observed that the conformational changes around the intermediate disulfide bring Cys32Trx in contact with Cys29Trx. Cys32Trx is activated for its nucleophilic attack by hydrogen bonds, and Cys32Trx is found to be more reactive than Cys82ArsC. Additionally, Cys32Trx directs its nucleophilic attack on the more susceptible Cys29Trx and not on Cys89ArsC. This multidisciplinary approach provides fresh insights into a universal thiol/disulfide exchange reaction mechanism that results in reduced substrate and oxidized Trx
    corecore