110 research outputs found
Visual and spatial language: the silent voice of Woodstock
By Aaron Humphrey; inked by John Carvaja
Ferromagnetic Polarons in La0.5Ca0.5MnO3 and La0.33Ca0.67MnO3
Unrestricted Hartree-Fock calculations on La0.5Ca0.5MnO3 and La0.33Ca0.67MnO3
in the full magnetic unit cell show that the magnetic ground states of these
compounds consist of 'ferromagnetic molecules' or polarons ordered in
herring-bone patterns. Each polaron consists of either three or five Mn ions
separated by O- ions with a magnetic moment opposed to those of the Mn ions.
Ferromagnetic coupling within the polarons is strong while coupling between
them is relatively weak. Magnetic moments on the Mn ions range between 3.8 and
3.9 Bohr magnetons in La0.5Ca0.5MnO3 and moments on the O- ions are -0.7 Bohr
magnetons. Each polaron has a net magnetic moment of 7.0 Bohr magnetons, in
good agreement with recently reported magnetisation measurements from electron
microscopy. The polaronic nature of the electronic structure reported here is
obviously related to the Zener polaron model recently proposed for
Pr0.6Ca0.4MnO3 on the basis of neutron scattering data.Comment: 4 pages 5 figure
Magnetic fluctuations in frustrated Laves hydrides R(Mn_{1-x}Al_{x})_{2}H_{y}
By neutron scattering, we have studied the spin correlations and spin
fluctuations in frustrated Laves hydrides, where magnetic disorder sets in the
topologically frustrated Mn lattice. Below the transition towards short range
magnetic order, static spin clusters coexist with fluctuating and alsmost
uncorrelated spins. The magnetic response shows a complexe lineshape, connected
with the presence of the magnetic inhomogeneities. Its analysis shows the
existence of two different processes, relaxation and local excitations, for the
spin fluctuations below the transition. The paramagnetic fluctuations are
discussed in comparison with classical spin glasses, cluster glasses, and non
Fermi liquid itinerant magnets
Raman phonons as a probe of disorder, fluctuations and local structure in doped and undoped orthorhombic and rhombohedral manganites
We present a rationalization of the Raman spectra of orthorhombic and
rhombohedral, stoichiometric and doped, manganese perovskites. In particular we
study RMnO3 (R= La, Pr, Nd, Tb, Ho, Er, Y and Ca) and the different phases of
Ca or Sr doped RMnO3 compounds as well as cation deficient RMnO3. The spectra
of manganites can be understood as combinations of two kinds of spectra
corresponding to two structural configurations of MnO6 octahedra and
independently of the average structure obtained by diffraction techniques. The
main peaks of compounds with regular MnO6 octahedra, as CaMnO3, highly Ca doped
LaMnO3 or the metallic phases of Ca or Sr doped LaMnO3, are bending and tilt
MnO6 octahedra modes which correlate to R-O(1) bonds and Mn-O-Mn angles
respectively. In low and optimally doped manganites, the intensity and width of
the broad bands are related to the amplitude of the dynamic fluctuations
produced by polaron hopping in the paramagnetic insulating regime. The
activation energy, which is proportional to the polaron binding energy, is the
measure of this amplitude. This study permits to detect and confirm the
coexistence, in several compounds, of a paramagnetic matrix with lattice
polaron together with regions without dynamic or static octahedron distortions,
identical to the ferromagnetic metallic phase. We show that Raman spectroscopy
is an excellent tool to obtain information on the local structure of the
different micro or macro-phases present simultaneously in many manganites.Comment: Submitted to PR
Phase diagram of the LaCaMnO compound for
We have studied the phase diagram of LaCaMnO for using neutron powder diffraction and magnetization measurements. At
300 K all samples are paramagnetic and single phase with crystallographic
symmetry . As the temperature is reduced a structural transition is
observed which is to a charge-ordered state only for certain x. On further
cooling the material passes to an antiferromagnetic ground state with Neel
temperature that depends on x. For the structural
transformation occurs at the same temperature as the magnetic transition.
Overall, the neutron diffraction patterns were explained by considering four
phase boundaries for which LaCaMnO forms a distinct phase: the
CE phase at , the charge-ordered phase at x=2/3, the monoclinic and
C-type magnetic structure at and the G-type magnetic structure at
x=1. Between these phase boundaries the magnetic reflections suggest the
existence of mixed compounds containing both phases of the adjacent phase
boundaries in a ratio determined by the lever rule
Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.
Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited
Evolution of the use of corticosteroids for the treatment of hospitalised COVID-19 patients in Spain between March and November 2020: SEMI-COVID national registry
Objectives: Since the results of the RECOVERY trial, WHO recommendations about the use of corticosteroids (CTs) in COVID-19 have changed. The aim of the study is to analyse the evolutive use of CTs in Spain during the pandemic to assess the potential influence of new recommendations. Material and methods: A retrospective, descriptive, and observational study was conducted on adults hospitalised due to COVID-19 in Spain who were included in the SEMI-COVID- 19 Registry from March to November 2020. Results: CTs were used in 6053 (36.21%) of the included patients. The patients were older (mean (SD)) (69.6 (14.6) vs. 66.0 (16.8) years; p < 0.001), with hypertension (57.0% vs. 47.7%; p < 0.001), obesity (26.4% vs. 19.3%; p < 0.0001), and multimorbidity prevalence (20.6% vs. 16.1%; p < 0.001). These patients had higher values (mean (95% CI)) of C-reactive protein (CRP) (86 (32.7-160) vs. 49.3 (16-109) mg/dL; p < 0.001), ferritin (791 (393-1534) vs. 470 (236- 996) µg/dL; p < 0.001), D dimer (750 (430-1400) vs. 617 (345-1180) µg/dL; p < 0.001), and lower Sp02/Fi02 (266 (91.1) vs. 301 (101); p < 0.001). Since June 2020, there was an increment in the use of CTs (March vs. September; p < 0.001). Overall, 20% did not receive steroids, and 40% received less than 200 mg accumulated prednisone equivalent dose (APED). Severe patients are treated with higher doses. The mortality benefit was observed in patients with oxygen saturation </=90%. Conclusions: Patients with greater comorbidity, severity, and inflammatory markers were those treated with CTs. In severe patients, there is a trend towards the use of higher doses. The mortality benefit was observed in patients with oxygen saturation </=90%
- …