67 research outputs found

    Electrochemically Generated Acid and Its Containment to 100 Micron Reaction Areas for the Production of DNA Microarrays

    Get PDF
    An addressable electrode array was used for the production of acid at sufficient concentration to allow deprotection of the dimethoxytrityl (DMT) protecting group from an overlaying substrate bound to a porous reaction layer. Containment of the generated acid to an active electrode of 100 micron diameter was achieved by the presence of an organic base. This procedure was then used for the production of a DNA array, in which synthesis was directed by the electrochemical removal of the DMT group during synthesis. The product array was found to have a detection sensitivity to as low as 0.5 pM DNA in a complex background sample

    A theoretical model for template-free synthesis of long DNA sequence

    Get PDF
    This theoretical scheme is intended to formulate a potential method for high fidelity synthesis of Nucleic Acid molecules towards a few thousand bases using an enzyme system. Terminal Deoxyribonucleotidyl Transferase, which adds a nucleotide to the 3′OH end of a Nucleic Acid molecule, may be used in combination with a controlled method for nucleotide addition and degradation, to synthesize a predefined Nucleic Acid sequence. A pH control system is suggested to regulate the sequential activity switching of different enzymes in the synthetic scheme. Current practice of synthetic biology is cumbersome, expensive and often error prone owing to the dependence on the ligation of short oligonucleotides to fabricate functional genetic parts. The projected scheme is likely to render synthetic genomics appreciably convenient and economic by providing longer DNA molecules to start with

    Discovery of Inhibitors of Leishmania β-1,2-Mannosyltransferases Using a Click-Chemistry-Derived Guanosine Monophosphate Library

    Get PDF
    Leishmania spp. are a medically important group of protozoan parasites that synthesize a novel intracellular carbohydrate reserve polymer termed mannogen. Mannogen is a soluble homopolymer of β-1,2-linked mannose residues that accumulates in the major pathogenic stages in the sandfly vector and mammalian host. While several steps in mannogen biosynthesis have been defined, none of the enzymes have been isolated or characterized. We report the development of a simple assay for the GDP-mannose–dependent β-1,2-mannosyltransferases involved in mannogen synthesis. This assay utilizes octyl α-d-mannopyranoside to prime the formation of short mannogen oligomers up to 5 mannose residues. This assay was used to screen a focussed library of 44 GMP-triazole adducts for inhibitors. Several compounds provided effective inhibition of mannogen β-1,2-mannosyltransferases in a cell-free membrane preparation. This assay and inhibitor compounds will be useful for dissecting the role of different mannosyltransferases in regulating de novo biosynthesis and elongation reactions in mannogen metabolism

    Response of human HT-29 colorectal tumor cells to extended exposure to bromodeoxyuridine

    Full text link
    Effects of the extended exposure of a human colorectal tumor-cell line (HT-29) to bromodeoxyuridine (BrdUrd) were studied in anticipation of the clinical use of that agent to treat colorectal cancer, particularly as a regionally delivered radiosensitizer. We found that 72-h exposure to a concentration of BrdUrd that is estimated to be locally maintained in the liver (100 μ M ) was significantly cytotoxic with a 3-log reduction in survival. As measured by GC/MS-SIM method, incorporation of BrdUrd into DNA followed an unexpected time course in that continuous exposure to 10 μ M BrdUrd resulted in maximal incorporation at 3 days, after which the extent of incorporated analog fell significantly (despite daily changes of the medium). This finding was apparently due to a greater rate of loss of BrdUrd from the medium at later time points. Flow cytometric analysis using an anti-BrdUrd antibody (IU-4) revealed that antibody binding also peaked and fell off with time. However, at exposure times of >24 h, the timing and extent of this decline were significantly different than had been indicated by the GC/MS method. These results indicate that the quantitative relationship between antibody staining and BrdUrd incorporation changes as drug-exposure time increases and that quantitative studies of anti-BrdUrd antibody binding must be interpreted with caution, especially when extended drug-treatment protocols have been used.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46921/1/280_2004_Article_BF00694337.pd

    Phylogenetic Distribution and Evolutionary History of Bacterial DEAD-Box Proteins

    Get PDF
    DEAD-box proteins are found in all domains of life and participate in almost all cellular processes that involve RNA. The presence of DEAD and Helicase_C conserved domains distinguish these proteins. DEAD-box proteins exhibit RNA-dependent ATPase activity in vitro, and several also show RNA helicase activity. In this study, we analyzed the distribution and architecture of DEAD-box proteins among bacterial genomes to gain insight into the evolutionary pathways that have shaped their history. We identified 1,848 unique DEAD-box proteins from 563 bacterial genomes. Bacterial genomes can possess a single copy DEAD-box gene, or up to 12 copies of the gene, such as in Shewanella. The alignment of 1,208 sequences allowed us to perform a robust analysis of the hallmark motifs of DEAD-box proteins and determine the residues that occur at high frequency, some of which were previously overlooked. Bacterial DEAD-box proteins do not generally contain a conserved C-terminal domain, with the exception of some members that possess a DbpA RNA-binding domain (RBD). Phylogenetic analysis showed a separation of DbpA-RBD-containing and DbpA-RBD-lacking sequences and revealed a group of DEAD-box protein genes that expanded mainly in the Proteobacteria. Analysis of DEAD-box proteins from Firmicutes and γ-Proteobacteria, was used to deduce orthologous relationships of the well-studied DEAD-box proteins from Escherichia coli and Bacillus subtilis. These analyses suggest that DbpA-RBD is an ancestral domain that most likely emerged as a specialized domain of the RNA-dependent ATPases. Moreover, these data revealed numerous events of gene family expansion and reduction following speciation

    Cardiovascular magnetic resonance phase contrast imaging

    Get PDF

    Host restriction factors in retroviral infection: promises in virus-host interaction

    Get PDF

    Production and Characterization of Monoclonal Antibodies to Human Sclerostin

    No full text
    We developed and characterized monoclonal antibodies directed against the amino-terminal and carboxy-terminal regions of human and mouse sclerostin (scl). Amino-terminal and carboxy-terminal scl peptides with limited homology to scl domain-containing protein-1 were synthesized using f-moc chemistry. The peptides were conjugated to keyhole limpet hemocyanin and the conjugates were used for immunization of mice. Monoclonal antibodies were obtained and characterized using bacterially expressed and insect cell–expressed recombinant scl. The amino-terminal (IgG 2aK) and carboxy-terminal (IgG 2bK) antibodies bound bioactive sclerostin that was expressed in an insect-cell expression system with dissociation constants in the nanomolar range. The antibodies are potentially useful agents that can be used for modulating sclerostin bioactivity
    corecore