7,388 research outputs found

    Fabrication of optical reflecting diffraction gratings by light-interference phenomenon

    Get PDF
    Features of technique: major reduction in cost of fabrication; gratings exhibit low stray or scattered radiation, improve signal noise ratio, and eliminate false spectral-lines; gratings can be fabricated free of optical aberrations, with high groove frequencies, and on practically any surface geometry; and fabrication time has been reduced

    Thunderstorms observed by radio astronomy Explorer 1 over regions of low man made noise

    Get PDF
    Radio Astronomy Explorer (RAE) I observations of thunderstorms over regions of low man-made noise levels are analyzed to assess the satellite's capability for noise source differentiation. The investigation of storms over Australia indicates that RAE can resolve noise generation due to thunderstorms from the general noise background over areas of low man-made noise activity. Noise temperatures observed by RAE over stormy regions are on the average 10DB higher than noise temperatures over the same regions in the absence of thunderstorms. In order to determine the extent of noise contamination due to distant transmitters comprehensive three dimensional computer ray tracings were generated. The results indicate that generally, distant transmitters contribute negligibly to the total noise power, being 30DB or more below contributions arriving from an area immediately below the satellite

    Prediction of high temperature metal matrix composite ply properties

    Get PDF
    The application of the finite element method (superelement technique) in conjunction with basic concepts from mechanics of materials theory is demonstrated to predict the thermomechanical behavior of high temperature metal matrix composites (HTMMC). The simulated behavior is used as a basis to establish characteristic properties of a unidirectional composite idealized an as equivalent homogeneous material. The ply properties predicted include: thermal properties (thermal conductivities and thermal expansion coefficients) and mechanical properties (moduli and Poisson's ratio). These properties are compared with those predicted by a simplified, analytical composite micromechanics model. The predictive capabilities of the finite element method and the simplified model are illustrated through the simulation of the thermomechanical behavior of a P100-graphite/copper unidirectional composite at room temperature and near matrix melting temperature. The advantage of the finite element analysis approach is its ability to more precisely represent the composite local geometry and hence capture the subtle effects that are dependent on this. The closed form micromechanics model does a good job at representing the average behavior of the constituents to predict composite behavior

    Giant enhanced optical nonlinearity of colloidal nanocrystals with a graded-index host

    Full text link
    The effective linear and third-order nonlinear optical properties of metallic colloidal crystal immersed in a graded-index host fluid are investigated theoretically. The local electric fields are extracted self-consistently based on the layer-to-layer interactions, which are readily given by the Lekner summation method. The resultant optical absorption and nonlinearity enhancement show a series of sharp peaks, which merge in a broadened resonant band. The sharp peaks become a continuous band for increasing packing density and number of layers. We believe that the sharp peaks arise from the in-plane dipolar interactions and the surface plasmon resonance, whereas the continuous band is due to the presence of the gradient in the host refractive index. These results have not been observed in homogeneous and randomly-dispersed colloids, and thus would be of great interest in optical nanomaterial engineering.Comment: Submitted to Applied Physics Letter

    Sorption vacuum trap Patent

    Get PDF
    Describing sorption vacuum trap having housing with group of reentrant wall portions projecting into internal gas-pervious container filled with gas and vapor sorbent materia

    Sorption vacuum trap

    Get PDF
    Modified sorption trap for use in high vacuum systems contains provisions for online regeneration of sorbent material. Trap is so constructed that it has a number of encapsulated resistance heaters and a valving and pumping device for removing gases from heated sorbing material. Excessive downtime is eliminated with this trap

    Mechanical rod peening

    Get PDF
    Tool is inexpensive and gives repeatable results. It is modified commercially-available rod-type weld slag removal gun and is pneumatically operated by regulated compressed air supply

    Effects on the Non-Relativistic Dynamics of a Charged Particle Interacting with a Chern-Simons Potential

    Full text link
    The hydrogen atom in two dimensions, described by a Schr\"odinger equation with a Chern-Simons potential, is numerically solved. Both its wave functions and eigenvalues were determined for small values of the principal quantum number nn. The only possible states correspond to l=0l=0. How the result depends on the topological mass of the photon is also discussed. In the case n=1n=1, the energy of the fundamental state corresponding to different choice for the photon mass scale are found to be comprehended in the interval −3,5×10−3eV≤E≤−9,0×10−2eV-3,5 \times 10^{-3} eV \leq E \leq -9,0 \times 10^{-2} eV, corresponding to a mean radius of the electron in the range (5.637±0.005)×10−8 (5.637 \pm 0.005) \times 10^{-8}~cm ≤≤(48.87±0.03)×10−8\leq \leq (48.87 \pm 0.03) \times 10^{-8}~cm. In any case, the planar atom is found to be very weekly bounded showing some features similar to the Rydberg atoms in three dimensions with a Coulombian interaction.Comment: 6 pages, 5 figure

    Investigation of discrete component chip mounting technology for hybrid microelectronic circuits

    Get PDF
    The use of polymer adhesives for high reliability microcircuit applications is a radical deviation from past practices in electronic packaging. Bonding studies were performed using two gold-filled conductive adhesives, 10/90 tin/lead solder and Indalloy no. 7 solder. Various types of discrete components were mounted on ceramic substrates using both thick-film and thin-film metallization. Electrical and mechanical testing were performed on the samples before and after environmental exposure to MIL-STD-883 screening tests
    • …
    corecore